• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Resolução integral por partes!

Dúvida Resolução integral por partes!

Mensagempor lucat28 » Sex Mar 18, 2011 14:47

Boa tarde senhores! To tendo dificudade em resolver a sequinte integral: \int_{}^{}\sqrt[]{x}Lnxdx

A minha resposta é a seguinte: \frac{2}{3}\sqrt[]{{x}^{3}}(Lnx-\frac{2}{3})+c

Sendo que a resposta que consta no gabarito é: \frac{2}{3} x   \sqrt[]{x}Lnx-\frac{4}{9}x\sqrt[]{x}+c
então queria a ajuda de você pra achar o erro.

Desde já, obrigado!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida Resolução integral por partes!

Mensagempor LuizAquino » Sex Mar 18, 2011 16:29

Recomendo que estude sobre fatoração e radiciação. A sua resposta é a mesma do gabarito.

\frac{2}{3}\sqrt[]{{x}^{3}}\left(\ln x-\frac{2}{3}\right)+c = \frac{2}{3}\sqrt{{x}^{3}}\cdot (\ln x)- \frac{2}{3}\sqrt{{x}^{3}} \cdot \left(\frac{2}{3}\right)+c

= \frac{2}{3}\sqrt{x^2\cdot x}\ln x  - \frac{4}{9}\sqrt{x^2\cdot x} + c

= \frac{2}{3}x\sqrt{x}\ln x  - \frac{4}{9}x\sqrt{x} + c

Observação
A simplificação \sqrt{x^2} = x só pode ser feita pois no contexto dessa integral temos que x > 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida Resolução integral por partes!

Mensagempor lucat28 » Sex Mar 18, 2011 16:45

Muito obrigado Luiz...
não sei como deixei de enxergar isso, parece tão simples agora. Fiquei um tempão procurando o erro e não achava.

Valeu Luiz!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.