• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Outra ED.

Outra ED.

Mensagempor Higor » Seg Fev 21, 2011 15:52

Boa Tarde Pessoal.

Estou fazendo um exercicio, mas esta dando um valor nao muito convencional, vamos la
talvez vcs possam me ajudar:

EXERCICIO:

\frac{dy}{dt} = \frac{t.e^t}{y.\sqrt[]{1+y^2}}

Começei da seguinte forma:

\int_{}^{} y \sqrt[]{1+y^2} dy  = [tex]\int_{}^{} t.e^t dt

na parte t.e^t dt


resolvi por partes

u= t dv= e^t
du = 1 v= e^t

u.v - \int_ v. du

= t. e^t - e^t


=\int_{}^{} y \sqrt[]{1+y^2} dy  =   t. e^t - e^t

bom, agora a primeira parte

\int_{}^{} y \sqrt[]{1+y^2} dy

u=1+y^2
du= 2y dy
du/2= y dy

assim :

\frac{1}{2} \int_{}^{}\sqrt[]{u} du

subistitui

raiz de u por u^1/2

e integrei

\frac{1}{2} * \frac{(2u^\frac{3}{2})}{3}

\frac{(2u^\frac{3}{2})}{6}

voltando o valor de u

\frac{2(1+y^2)^\frac{3}{2}}{6}

\frac{(1+y^2)^\frac{3}{2}}{3}

ai chego até esse ponto:

\frac{(1+y^2)^\frac{3}{2}}{3} = t.e^t - e^t

nao sei se esta certo, por favor me ajudem ai.
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Outra ED.

Mensagempor Marcampucio » Seg Fev 21, 2011 16:48

Está tudo certo, sim.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Outra ED.

Mensagempor Higor » Seg Fev 21, 2011 17:04

Mas, ainda nao chegou ao fim ?? tem mais alguma coisa não tem ???
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.