• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de Logaritmo

Derivada de Logaritmo

Mensagempor Moura » Qua Jan 19, 2011 23:02

Determine a derivada de y em relação a x:

y=ln.\sqrt[]{\frac{(x+1)^5}{(x+2)^{20}}}

Resp.: \frac{-(15x+10)}{2(x+2)(x+1)}

Desde já agradeço a ajuda. :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de Logaritmo

Mensagempor Elcioschin » Qui Jan 20, 2011 11:29

V[(x + 1)^5] = (x + 1)^(5/2)

V[1/(x + 2)^20) = V[(x + 2)^-20] = (x + 2)^(-10)

y = ln[(x + 1)^(5/2)*(x + 2)^(-10)]

Lembre-se que:

a) Dx ln|u| = (1/u) Dx u
b) Dx (A*B) = B*Dx A + A*Dx B

u = [(x + 1)^(5/2)*(x + 2)^(-10)] ----> 1/u = (x + 2)^10/(x + 1)^(5/2)

Dx u = [(x + 2)^(-10)]*[(5/2)*(x + 1)^3/2] + [(x + 1)^(5/2)]*[-10*(x + 2)^(-11)]

Dx u = [5*(x + 1)^(3/2)]/[2*(x + 2)^10] - [10*(x + 1)^(5/2)]/[(x + 2)^11]

MMC = 2*(x + 2)^11

Dx u = {[5*(x + 1)^(3/2)]*(x + 2) - 20*(x + 1)^(5/2)}/2*(x + 2)^11

Colocando (x + 1)^(3/2) em evidência no numerador:

Dx u = [(x + 1)^(3/2)]*[5*(x + 2] - 20*(x + 1)]/2*(x + 2)^11

Dx u = [(x + 1)^(3/2)]*(- 15x - 10)/2*(x + 2)^11

Dx y = (1/u)*Dx u


Dx y = [(x + 2)^10/(x + 1)^(5/2)]* [(x + 1)^(3/2)]*(- 15x - 10)/2*(x + 2)^11


Dx y = - (15x + 10)/2*(x + 2)*(x + 1)

Ufa
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Derivada de Logaritmo

Mensagempor Moura » Qui Jan 20, 2011 21:00

\sqrt[]{[(x+1)^5]}=(x+1)^{5/2}

\sqrt[]{[\frac{1}{(x+2)^{20}}]}=\sqrt[]{[(x+2)^{-20}]}=(x+2)^{-10}

y=ln[(x+1)^{5/2}*(x+2)^{-10}

a) Dx ln|u|=\frac{1}{u}*Dxu

b) Dx (A*B)=B*DxA+A*DxB

u=[(x+1)^{5/2}*(x+2)^{-10}] \rightarrow\frac{1}{u}=\frac{(x+2)^{10}}{(x+1)^{5/2}}

Dxu=[(x+2)^{-10}]*[(\frac{5}{2}(x+1)^{3/2}]+[(x+1)^{5/2}]*[-10(x+2)^{-11}]

Dxu=\frac{[5(x+1)^{3/2}]}{[2(x+2)^{10}]}-\frac{[10(x+1)^{5/2}]}{[(x+2)^{11}]}

MMC=2(x+2)^{11}

Dxu={[5(x+1)^{3/2}]*(x+2)-\frac{20(x+1)^{5/2}}{2(x+2)^{11}}

Colocando (x+1)^{3/2} em evidência no numerador:

Dxu=[(x+1)^{3/2}]*\frac{[5(x+20)-20(x+1)]}{2(x+2)^{11}}

Dxu=[(x+1)^{3/2}]*\frac{(-15x-10)}{2(x+2)^{11}}

Dxy=\frac{1}{u}*Dxu

Dxy=[\frac{(x+2)^{10}}{(x+1)^{5/2}}]*[(x+1)^{3/2}]*\frac{(-15x-10)}{2(x+2)^{11}}

Dxy=-\frac{(15+10)}{(x+2)(x+1)}
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada de Logaritmo

Mensagempor Elcioschin » Qui Jan 20, 2011 21:57

Moura

Agradeço pelo Latex.
A apresentação ficou muito melhor.

Elcio
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?