• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Moura » Ter Jan 18, 2011 22:42

Determiem a derivada de y em relação a \theta

y=ln(\frac{\sqrt[]{sen\theta*cos\theta}}{1+2ln\theta})

Resp.: Micrsoft Math

\frac{cos(\theta)^2-sen(\theta)^2}{(4ln(\theta)+2)*\sqrt[]{sen\theta*cos\theta}}-\frac{2.\sqrt[]{sen\theta*con\theta}}{\theta(2ln\theta+1)^2}

Resp.: HP 50

-\frac{(2\theta*ln\theta+\theta)sen^2\theta+4cos\theta*sen\theta-(2\theta*ln\theta+\theta)cos^2\theta}{(4ln\theta+2\theta)cos\theta*sen\theta}

Desde já agradeço. :y:
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivada

Mensagempor Renato_RJ » Qua Jan 19, 2011 00:06

Campeão, o log natural você pode "abrir", veja:

ln (\frac{\sqrt{sen \Theta \cdot cos \Theta}}{1+2 \cdot ln \Theta}) \Rightarrow \, ln(\sqrt{sen \Theta \cdot cos \Theta}) - ln(1 + 2 \cdot ln \Theta)

Então acho que você pode usar a regra da cadeia e chamar de u = 1 + 2 \cdot ln \Theta para realizar a segunda derivada e fazer semelhante para realizar a primeira derivada chamando de v = \sqrt{sen \Theta \cdot cos \Theta}.

Lembrando que:

\frac{d ln x} {dx} \Rightarrow \, \frac{1}{x}

Eu cheguei ao seguinte resultado:

\frac{1}{2} \cdot ( - \frac{4}{\Theta + 2 \cdot \Theta \cdot ln \Theta} - tang \Theta + cot \Theta)

Conferi no site http://www.wolframalpha.com e o site chegou no mesmo resultado, mas sabe como é, posso ter errado...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.