• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor OtavioBonassi » Dom Jan 16, 2011 18:37

"O valor de \lim_{x\rightarrow0^+}\frac{2ln(x)}{ln(x^4 + 3x)} é :"

Como eu trabalho com ln 0 ? Tentei fazendo por L'Hopital ,mas nao é certo né, mas foi o unico jeito que eu imaginei de "sumir" com esse ln.Alguem tem alguma solução ?
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limite

Mensagempor Cah » Dom Jan 30, 2011 21:13

Em uma sequencia de Fibonacci encontrei os valores {1,2,3,5,8,13,21,... } e agora tenho que demonstrar lim[(an+1)/an] = lim an/(an -1). Por favor, me ajude!!!
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limite

Mensagempor lucio Miranda » Seg Jan 31, 2011 17:46

vc coloca que b = lim(an + 1)/an = 1 + lim(an-1)/an = 1 + 1/lim an/(an - 1),
como a sucessão é crescente satisfaz a relação

bn = lim (an + 1)/an = lim an/(an - 1)
b*2 = b + 1
b*2 - b - 1 = 0
b = (1 +v5)/2
lucio Miranda
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Jan 31, 2011 12:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor Cah » Seg Jan 31, 2011 18:46

OBRIGADA AJUDOU BASTANTE
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.