• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor OtavioBonassi » Dom Jan 16, 2011 18:37

"O valor de \lim_{x\rightarrow0^+}\frac{2ln(x)}{ln(x^4 + 3x)} é :"

Como eu trabalho com ln 0 ? Tentei fazendo por L'Hopital ,mas nao é certo né, mas foi o unico jeito que eu imaginei de "sumir" com esse ln.Alguem tem alguma solução ?
OtavioBonassi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jan 05, 2011 14:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limite

Mensagempor Cah » Dom Jan 30, 2011 21:13

Em uma sequencia de Fibonacci encontrei os valores {1,2,3,5,8,13,21,... } e agora tenho que demonstrar lim[(an+1)/an] = lim an/(an -1). Por favor, me ajude!!!
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limite

Mensagempor lucio Miranda » Seg Jan 31, 2011 17:46

vc coloca que b = lim(an + 1)/an = 1 + lim(an-1)/an = 1 + 1/lim an/(an - 1),
como a sucessão é crescente satisfaz a relação

bn = lim (an + 1)/an = lim an/(an - 1)
b*2 = b + 1
b*2 - b - 1 = 0
b = (1 +v5)/2
lucio Miranda
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Jan 31, 2011 12:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor Cah » Seg Jan 31, 2011 18:46

OBRIGADA AJUDOU BASTANTE
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.