• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria] Área do triângulo

[Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 14:47

Questão 37 (Concurso Bombeiro RJ 2008)

Na figura abaixo, o triângulo ABC é equilátero com AM = MB = 4 cm e CD = 6 cm.

Imagem

A área do triângulo CDE, em cm², é:

Alternativa certa:
A) \frac{18\sqrt[]{3}}{5}

Eu tentei encontrar uma semelhança entre os dois triângulos de baixo, mas só tem um angulo congruente.

Outra dúvida se eu tiver as medidas do triangulo CDE, como encontro a área desse triãngulo? Pela formula Bxh/2 teria que ter a altura (h), certo! Aguardo ajuda, obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor young_jedi » Sáb Out 20, 2012 15:55

figura triangulo.jpg
figura triangulo.jpg (9.96 KiB) Exibido 1799 vezes


levando em consideração que é um triangulo equilatero então sabemos que os angulos em A, B e C medem 60º

com isso temos

a=4cos60^o=2

b=4sen60^o=2\sqrt{3}

e

h=x.tg60^o

h=x.\sqrt{3}

por semelhança de triangulos

\frac{b}{h}=\frac{8+6-a}{6+x}

\frac{2\sqrt{3}}{x\sqrt{3}}=\frac{12}{6+x}

12+2x=12x

resolvendo encontra-se x e com isso h, depois é so utilizar o calculo da area


Se voce tivesse as medidas dos lados do triangulo, voce teria que calcular a altura relativa a um dos lados para calcular a area.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1207
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 21:13

Obrigado young_jedi pela ajuda. Vou transferir para o caderno e estudar essa resolução. Um abração.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59