• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria] Área do triângulo

[Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 14:47

Questão 37 (Concurso Bombeiro RJ 2008)

Na figura abaixo, o triângulo ABC é equilátero com AM = MB = 4 cm e CD = 6 cm.

Imagem

A área do triângulo CDE, em cm², é:

Alternativa certa:
A) \frac{18\sqrt[]{3}}{5}

Eu tentei encontrar uma semelhança entre os dois triângulos de baixo, mas só tem um angulo congruente.

Outra dúvida se eu tiver as medidas do triangulo CDE, como encontro a área desse triãngulo? Pela formula Bxh/2 teria que ter a altura (h), certo! Aguardo ajuda, obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor young_jedi » Sáb Out 20, 2012 15:55

figura triangulo.jpg
figura triangulo.jpg (9.96 KiB) Exibido 1850 vezes


levando em consideração que é um triangulo equilatero então sabemos que os angulos em A, B e C medem 60º

com isso temos

a=4cos60^o=2

b=4sen60^o=2\sqrt{3}

e

h=x.tg60^o

h=x.\sqrt{3}

por semelhança de triangulos

\frac{b}{h}=\frac{8+6-a}{6+x}

\frac{2\sqrt{3}}{x\sqrt{3}}=\frac{12}{6+x}

12+2x=12x

resolvendo encontra-se x e com isso h, depois é so utilizar o calculo da area


Se voce tivesse as medidas dos lados do triangulo, voce teria que calcular a altura relativa a um dos lados para calcular a area.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1217
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 21:13

Obrigado young_jedi pela ajuda. Vou transferir para o caderno e estudar essa resolução. Um abração.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee:


cron