• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria] Área do triângulo

[Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 14:47

Questão 37 (Concurso Bombeiro RJ 2008)

Na figura abaixo, o triângulo ABC é equilátero com AM = MB = 4 cm e CD = 6 cm.

Imagem

A área do triângulo CDE, em cm², é:

Alternativa certa:
A) \frac{18\sqrt[]{3}}{5}

Eu tentei encontrar uma semelhança entre os dois triângulos de baixo, mas só tem um angulo congruente.

Outra dúvida se eu tiver as medidas do triangulo CDE, como encontro a área desse triãngulo? Pela formula Bxh/2 teria que ter a altura (h), certo! Aguardo ajuda, obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor young_jedi » Sáb Out 20, 2012 15:55

figura triangulo.jpg
figura triangulo.jpg (9.96 KiB) Exibido 1873 vezes


levando em consideração que é um triangulo equilatero então sabemos que os angulos em A, B e C medem 60º

com isso temos

a=4cos60^o=2

b=4sen60^o=2\sqrt{3}

e

h=x.tg60^o

h=x.\sqrt{3}

por semelhança de triangulos

\frac{b}{h}=\frac{8+6-a}{6+x}

\frac{2\sqrt{3}}{x\sqrt{3}}=\frac{12}{6+x}

12+2x=12x

resolvendo encontra-se x e com isso h, depois é so utilizar o calculo da area


Se voce tivesse as medidas dos lados do triangulo, voce teria que calcular a altura relativa a um dos lados para calcular a area.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1231
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria] Área do triângulo

Mensagempor fernandocez » Sáb Out 20, 2012 21:13

Obrigado young_jedi pela ajuda. Vou transferir para o caderno e estudar essa resolução. Um abração.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}