• Anúncio Global
    Respostas
    Exibições
    Última mensagem

teorema de Tales e semelhança de triângulos

teorema de Tales e semelhança de triângulos

Mensagempor Sal » Sáb Mar 17, 2012 16:33

(UESPI-PI) Entre os pontos A e B de uma região plana passa um rio retilíneo com 20 m de largura. Um caminho constituído de estradas retilíneas e uma ponte sobre o rio devem ser construídos conectados os pontos A e B, A distância entre A e a margem do rio é de 30 m. e a distância entre B e a margem do rio é de 40 m. A ponte deve ser perpendicular às margens retilíneas do rio, como ilustra a seguir,
Qual o menor comprimento possível do caminho? Resposta correta 270 m.

Esta atividade esta relacionada no livro como semelhança de triângulos e estamos utilizando razões para sua resoluções. Dessa forma não conseguimos encontrar a solução e resolvemos pelo teorema de Pitágoras desconsiderando a ponte e o rio
{70}^{2}+ {240}^{2}={ab}^{2}

AB = 250 

AB + 20 (largura do rio) = 270 m

Gostaria de saber se posso considerar AB um segmento contínuo.
Anexos
ativ rio.jpg
Editado pela última vez por Sal em Dom Mar 18, 2012 11:10, em um total de 1 vez.
Sal
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 10, 2012 10:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: regular
Andamento: cursando

Re: teorema de Tales e semelhança de triângulos

Mensagempor LuizAquino » Dom Mar 18, 2012 01:26

Sal escreveu:(UESPI-PI) Entre os pontos A e B de uma região plana passa um rio retilíneo com 20 m de largura. Um caminho constituído de estradas retilíneas e uma ponte sobre o rio devem ser construídos conectados os pontos A e B, A distância entre A e a margem do rio é de 30 m. e a distância entre B e a margem do rio é de 40 m. A ponte deve ser perpendicular às margens retilíneas do rio, como ilustra a seguir,
Qual o menor comprimento possível do caminho? Resposta correta 270 m.

ativ rio.jpg
ativ rio.jpg (27.66 KiB) Exibido 4242 vezes



Sal escreveu:
Esta atividade esta relacionada no livro como semelhança de triângulos e estamos utilizando razões para sua resoluções. Dessa forma não conseguimos encontrar a solução e resolvemos pelo teorema de Pitágoras desconsiderando a ponte e o rio
{70}^{2}+ {240}^{2}={ab}^{2}

AB = 250 

AB + 20 (largura do rio) = 270 m

Gostaria de saber se posso considerar AB um segmento contínuo.


Você não pode (magicamente) desconsiderar o rio e a ponte, criando assim um triângulo retângulo de hipotenusa AB e de catetos 70 e 240. A não ser que você justifique porque isso pode ser feito.

O menor caminho será dado quando os dois triângulos retângulos AMC e BND forem semelhantes (vide a figura abaixo).

ativ rio2.jpg
ativ rio2.jpg (56.63 KiB) Exibido 4242 vezes


Podemos então montar o sistema:

\begin{cases}
x + y = 240 \\ \\
\dfrac{x}{y} = \dfrac{30}{40}
\end{cases}

Resolvendo esse sistema, obtemos que x = \frac{720}{7} e y = \frac{960}{7} .

Temos então que:

\overline{AC}^2 = 30^2 + \left(\dfrac{720}{7}\right)^2 \Rightarrow \overline{AC} = \dfrac{750}{7}

\overline{BD}^2 = 40^2 + \left(\dfrac{960}{7}\right)^2 \Rightarrow \overline{AC} = \dfrac{1.000}{7}

O comprimento L do caminho será:

L = \dfrac{750}{7} + 20 + \dfrac{1.000}{7}   \Rightarrow  L = 270

Observação

Você provavelmente deve estar se perguntando: "mas por que a minha resolução deu certo?".

A sua resolução só deu certo, pois na figura os triângulos retângulos AMC e BND são semelhantes e as margens do rio são paralelas. Desse modo, como MC e ND são paralelos e AM e BN são paralelos, temos que AC e BD são paralelos. Deslocando BD paralelamente até que o ponto D encontre o ponto C, podemos formar um triângulo retângulo de hipotenusa AB e de catetos 70 e 240. Se você tivesse explicado isso, então a sua solução estaria correta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: teorema de Tales e semelhança de triângulos

Mensagempor Sal » Sáb Mar 24, 2012 19:43

Ok, muito obrigada
Sal
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 10, 2012 10:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: regular
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.