por alfabeta » Seg Mar 05, 2012 11:45
Como consigo calcular a mediana de um triangulo partindo de um determinado vértice tendo o valor dos três lados?
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Seg Mar 05, 2012 13:17
Alfabeta, por favor digite o enunciado inteiro. Mediana é a reta traçada de um vértice até o ponto médio de um lado do polígono.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por alfabeta » Seg Mar 05, 2012 14:49
Determine a medida da mediana AM do triângulo ABC,
aplicando a fórmula da mediana.
AB=6
AC=10
BC= 12
Sei que a mediana AM divide o lado BC em duas partes iguais. E o que faço agora? Tem alguma fórmula?
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Seg Mar 05, 2012 15:53
alfabeta escreveu:Como consigo calcular a mediana de um triangulo partindo de um determinado vértice tendo o valor dos três lados?
alfabeta escreveu:E o que faço agora? Tem alguma fórmula?
Com uma rápida pesquisa no
Google (com a expressão "
fórmula da mediana geometria"), você poderia ter encontrado a seguinte página:
Mediana (geometria)http://pt.wikipedia.org/wiki/Mediana_%28geometria%29
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alfabeta » Seg Mar 05, 2012 22:14
Eu já havia feito esta pesquisa e achado estes conceitos. Ocorre que nesta questão não é para usar o teorema de Stewart.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Seg Mar 05, 2012 22:45
alfabeta escreveu:Eu já havia feito esta pesquisa e achado estes conceitos. Ocorre que nesta questão não é para usar o teorema de Stewart.
Acontece que a fórmula da mediana
é apenas um caso particular do Teorema de Stewart.
A fórmula que você deve usar é aquela mesma.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Mediana]
por MarciaZardo » Sáb Jan 21, 2012 17:46
- 2 Respostas
- 1633 Exibições
- Última mensagem por MarciaZardo

Dom Jan 22, 2012 20:24
Estatística
-
- Mediana
por Pri Ferreira » Seg Abr 09, 2012 16:17
- 1 Respostas
- 1452 Exibições
- Última mensagem por LuizAquino

Ter Abr 10, 2012 20:55
Estatística
-
- Mediana e a Moda
por Walquiria » Dom Dez 18, 2011 12:14
- 0 Respostas
- 847 Exibições
- Última mensagem por Walquiria

Dom Dez 18, 2011 12:14
Estatística
-
- Mediana de classes
por ah001334 » Ter Mar 06, 2012 08:54
- 0 Respostas
- 1140 Exibições
- Última mensagem por ah001334

Ter Mar 06, 2012 08:54
Estatística
-
- Mediana de um triângulo
por iclilima » Seg Jul 02, 2012 11:57
- 1 Respostas
- 1295 Exibições
- Última mensagem por Renato_RJ

Seg Jul 02, 2012 14:56
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.