por alfabeta » Ter Fev 28, 2012 11:53
(Ufmg 2002) Na figura abaixo, a circunferência tem centro O e o seu raio tem a mesma medida do segmento BC. Sejam alfa a medida do ângulo AÔD e ’beta a medida do ângulo alfa e beta
nao consigo copiar e colar a figura...por favor me ajude.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Ter Fev 28, 2012 16:05
Alfabeta, embaixo da caixa de digitação procure uma pequena aba azul que diz "Adicionar um anexo". Você poderá anexar a figura e assim veremos o que o enunciado que dizer. Não se esqueça de completá-lo, pois ainda faltam dados e a pergunta.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por alfabeta » Ter Fev 28, 2012 20:36
Obrigado pela ajuda!
Segue a questão:
(Ufmg) Na figura abaixo, a circunferência tem centro O e o seu raio tem a mesma medida do segmento BC. Sejam ? a medida do ângulo AÔD e ? a medida do ângulo ACD.
Ache ? em função de ?
a) ? = 5?/2 b) ? = 3 ? c) ? = 7 ? /2 d) ? = 2 ? e) ?= ?
Tentativa de resolução: primeiro, eu disse que o arco AD é igual a ?, que é o angulo central. ? é o angulo externo do triangulo AOB, portanto vale B mais OÂC. não sei como achar este último angulo.
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qua Fev 29, 2012 13:12
alfabeta escreveu:(Ufmg) Na figura abaixo, a circunferência tem centro O e o seu raio tem a mesma medida do segmento BC. Sejam ? a medida do ângulo AÔD e ? a medida do ângulo ACD.
Ache ? em função de ?

- figura.png (9.44 KiB) Exibido 12541 vezes
alfabeta escreveu:Tentativa de resolução: primeiro, eu disse que o arco AD é igual a ?, que é o angulo central. ? é o angulo externo do triangulo AOB, portanto vale B mais OÂC. não sei como achar este último angulo.
Observe a figura abaixo.

- figura2.png (28.13 KiB) Exibido 12541 vezes
Foi informado que BC mede o mesmo que o raio. Isso significa que BC = OB. Sendo assim, o triângulo OBC é isósceles. Podemos então dizer que

.
Além disso, o triângulo AOB também é isósceles, pois OA e OB são raios da circunferência. Podemos então dizer que

.
Note que o ângulo

é externo ao triângulo OBC. Sendo assim, temos que

.
Temos então que

.
Agora termine o exercício.
Editado pela última vez por
LuizAquino em Qui Mar 01, 2012 02:21, em um total de 1 vez.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alfabeta » Qua Fev 29, 2012 22:42
Professor Luiz Aquino, muito obrigada! Entendi!
=
Finalizando: Como alfa é ângulo externo de AOC, temos que alfa = beta + 2 beta = 3 beta!
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Angulos na Circunferencia
por vyhonda » Seg Mar 29, 2010 11:12
- 2 Respostas
- 12384 Exibições
- Última mensagem por vyhonda

Qua Mar 31, 2010 13:18
Geometria Plana
-
- Ângulos na Circunferência
por Douglaspimentel » Qua Set 15, 2010 00:17
- 1 Respostas
- 4937 Exibições
- Última mensagem por gichan

Qua Set 15, 2010 02:33
Geometria Plana
-
- [Ângulos numa Circunferência] (UNIFOR-CE/1998)
por eiji » Sex Abr 13, 2012 20:57
- 2 Respostas
- 9795 Exibições
- Última mensagem por eiji

Sex Abr 13, 2012 21:28
Geometria Plana
-
- [circunferência] Questão de reta secante a circunferência
por danielleecb » Qui Jun 07, 2012 23:26
- 1 Respostas
- 1774 Exibições
- Última mensagem por MarceloFantini

Sex Jun 08, 2012 12:24
Geometria Analítica
-
- Ângulos
por admin » Sex Set 07, 2007 06:42
- 3 Respostas
- 12777 Exibições
- Última mensagem por Numwantida

Qui Mai 24, 2018 05:06
Pérolas
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.