por VFernandes » Seg Mar 07, 2011 00:59
Olá amigos,
Não estou conseguindo resolver o seguinte exercício:
(Na minha notação, negrito quer dizer que trata-se de um vetor, ou seja, tem uma setinha em cima)
Num triângulo ABC é dado X sobre AB tal que ||
AB||=2||
XB|| e é dado Y sobre BC tal que ||
BY||=3||
YC||. Mostre que as retas CX e AY são concorrentes.
Sugestão: suponha que
CX=
AY e deduza uma contradição.
O que eu fiz:
CX=
AYBX - BC =

(
AB +
BY)
BX - BC =
AB +
BY-
XB - BC = 3
XB + 3/4
BCXB(3

+1) +
BC(3/4

+ 1) =
0Não consegui pensar em mais nada além disso e não sei até que ponto isso é uma contradição... (seria porque, como ABC é, por hipótese, um triângulo, XB e BC não poderiam ser paralelos, já que X pertence a AB e AB é um dos lados adjacentes ao lado BC.)
Alguém teria alguma luz?
-
VFernandes
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Mar 04, 2011 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Elétrica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstração envolvendo ângulo
por Balanar » Qua Set 01, 2010 22:30
- 0 Respostas
- 1511 Exibições
- Última mensagem por Balanar

Qua Set 01, 2010 22:30
Geometria Plana
-
- Demonstração envolvendo bissetrizes
por Balanar » Qui Set 02, 2010 00:15
- 0 Respostas
- 1242 Exibições
- Última mensagem por Balanar

Qui Set 02, 2010 00:15
Geometria Plana
-
- Demonstração envolvendo triângulo
por Balanar » Dom Out 17, 2010 00:47
- 3 Respostas
- 1917 Exibições
- Última mensagem por Balanar

Dom Out 17, 2010 21:09
Geometria Plana
-
- Demonstração envolvendo velocidade
por Cleyson007 » Sex Jul 20, 2012 10:18
- 2 Respostas
- 1470 Exibições
- Última mensagem por Russman

Sex Jul 20, 2012 11:26
Física
-
- Demonstração envolvendo bissetrizes (Confirmar)
por Balanar » Sex Set 03, 2010 19:52
- 0 Respostas
- 1066 Exibições
- Última mensagem por Balanar

Sex Set 03, 2010 19:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.