• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ângulos na Circunferência

Ângulos na Circunferência

Mensagempor Douglaspimentel » Qua Set 15, 2010 00:17

Uem-Pr Considere ABC um triângulo inscrito em uma semicircuferência de diâmetro BC cuja medida do ângulo C é 20 º. Determine a medida, em graus, do ângulo formado pela altura e pela mediana relativas a hipotenusa.
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando

Re: Ângulos na Circunferência

Mensagempor gichan » Qua Set 15, 2010 02:33

*Edit: Desculpe, quando eu revi que eu reparei que usei as letras trocadas(A, B, C do triângulo). Mas veja que não faz a menor diferença na resposta final, então prefiro deixar assim mesmo ^.^


Imagem

Repare o seguinte.
*Todo o triângulo incrito numa semicircunferência é retângulo.
No caso, o triângulo é retângulo em B(ABC).
O ponto M corresponde a mediana e o ponto H a altura(formando um ângulo de 90º com a base)
*O ângulo BÂC(70º) corresponde à metade do arco BC(140º). Consequentemente, o ângulo central M (BMC) é de 140º:
Imagem

*Analisando o triângulo BMC, observamos que já possuímos 2 de seus ângulos. Sendo assim, concluímos que o ângulo B (MBC) é de 20º:
*Pelo mesmo raciocínio e lembrando que BH é a altura, ou seja, forma ângulo de 90º com a hipotenusa, temos que o ângulo B (ABH) é 20º.
Imagem
Para concluir, retomamos o começo: o triângulo ABC é incrito numa semicircunferência, o que significa que o ângulo B(ABC) vale 90º. Sendo assim:

20 + x + 20 = 90
x = 50º.
Avatar do usuário
gichan
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Jul 19, 2010 15:33
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Programação
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.