• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Independência Linear

Independência Linear

Mensagempor apotema2010 » Sex Mai 14, 2010 12:20

Se {u,v} é L.I. w=tu+sv, então uma condição de t e s devem satisfazer para que {w,u - v} seja L.I. é:
a) t=2s
b)t=s
c)t=-s
d)t \neq -s
e)t \neq s

Pode me explicar como chegar ao resultado, não consegui entender a aula que assisti, por ter perdido uma aula anterior. Desde já obrigado.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)