• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria plana - Questões

Geometria plana - Questões

Mensagempor alex_08 » Seg Fev 11, 2013 18:00

Questão 1: Num triângulo ABC, as bissetrizes dos ângulos externos em B e C formam
um ângulo de 40º e a altura relativa ao lado BC forma com a bissetriz do ângulo A um ângulo de
25º. Calcule os ângulos do trângulo.






Questão 2: ABC e um triângulo no qual a bissetriz interna relativa ao ângulo  é igual
ao lado AB e a bissetriz interna relativa ao ângulo C e igual ao lado AC. Calcule os ângulos do
triângulo ABC, representando-os em graus, minutos e segundos.



Obrigado.
alex_08
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Dom Fev 10, 2013 01:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Geometria plana - Questões

Mensagempor alex_08 » Qui Fev 14, 2013 11:24

Bom Dia, pessoal conseguir resolver a questão 1. Obrigado

Quem puder me ajudar com a Questão 2, ficaria grato.


abraços.
alex_08
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Dom Fev 10, 2013 01:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Geometria plana - Questões

Mensagempor young_jedi » Qui Fev 14, 2013 13:52

triang.png
triang.png (3.21 KiB) Exibido 5015 vezes


pelo fato da bissetriz ser igual ao lado do triangulo, então nos podemos dizer que os triangulos internos são isoceles sendo assim eles possuem dois angulos igauis

com isso nos tirmaos as relações

\frac{a}{2}=180-2b

\frac{c}{2}=180-2a

então

a=360-4b

c=360-4a

c=360-4(360-4b)

c=16b-1080

mais nos abemos que

a+b+c=180

portanto

360-4b+b+16b-1080=180

13b=1080+180-360

13b=900

b=\frac{900}{13}

agora é so efetuar a divisão e calcular os outros dois angulos, qualquer duvida comente
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria plana - Questões

Mensagempor alex_08 » Qui Fev 14, 2013 18:46

muito obrigado.
alex_08
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Dom Fev 10, 2013 01:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Geometria plana - Questões

Mensagempor alex_08 » Ter Fev 26, 2013 09:43

como eu divido?

900º/13
1080º/13
360º/13?

pode me ajudar?
alex_08
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Dom Fev 10, 2013 01:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Geometria plana - Questões

Mensagempor young_jedi » Ter Fev 26, 2013 14:28

voce faz a divisão normal, o numero depoies da virgula multiplicado por 60 dara os minutos, se ainda tiver valor depois da virgula esse valor multiplicado por 60 dara os segundos

exemplo

900/13=69+\frac{3}{13}

portanto temos 69º

\frac{3.60}{13}=13+\frac{11}{13}

então temos 13'

\frac{11.60}{13}=50+\frac{10}{13}

portanto temos 50"

ou seja o angulo é

69º 13' 50"
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria plana - Questões

Mensagempor alex_08 » Ter Fev 26, 2013 16:20

muito obrigado. :y:
alex_08
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Dom Fev 10, 2013 01:29
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D