Inst. Mais – O volume de uma esfera pode ser calculado pela fórmula 4/3 x TT x R³, onde R é o raio da mesma. Uma esfera com raio 20% inferior a outra terá um volume inferior em relação à primeira numa faixa:
(a) de até 25%
(b) Entre 25% e 40%
(c) Entre 41% e 60%.
(d) Superior a 60%.
Pergunta: A minha dúvida é se eu realmente resolvi o problema da forma correta, cheguei ao resultado do gabarito. Mas as alternativas não são um número exato, o que me deixa em dúvida se o meu raciocínio foi correto, assim gostaria da ajuda de alguém para corrigir este problema.
Como o enunciado só informa uma esfera com raio 20% inferior, realizei os cálculos com R=10 e R=8.
4/3 x TT x R³
R = 10
4/3 x 3,14 x 10³
4/3 x 3,14 x 1000
4/3 x 3140
12560/3
4.186,67
R = 8
4/3 x 3,14 x 8³
4/3 x 3,14 x 512
4/3 x 1607,68
6430,72/3
2.143,57
Regra de três:
4.186,67 ---- 100
2143,57 ---- X
4.186,67X = 2143,57 x 100
4.186,67X = 214357
X = 214357 / 4.186,67
X = 51,19
Resposta: (c) Entre 41% e 60%.


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.