• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria

Geometria

Mensagempor Ovelha » Qua Set 10, 2014 19:05

Um dos ângulos internos de um triângulo isósceles mede 100°. Qual é a medida do ângulo agudo formado pelas bissetrizes dos outros ângulos internos?
a) 20°
b) 40°
c) 60°
d) 80°
e) 140°
Resposta: B

Boa tarde, gostaria de saber se estou correto na compreensão do que se pede na pergunta desta questão acima da UFES pois pensei desta forma:

Quando a pergunta diz:Qual é a medida do ângulo agudo formado pelas bissetrizes dos outros ângulos internos? dá margem a entender que sabendo que o triângulo é isosceles e já possuindo um de seus ângulo a pessoa pode entender como resposta bastando saber o valor do ângulo dos outros dois e dizer o valor do angulo agora com a bissetriz que no caso passaria a ser 20º. Na minha concepção até o momento creio que existe uma má formulação da pergunta.

Gostaria de ouvir a opinião de outra pessoa quanto a interpretação.

Desde já gradeço as respostas
Ovelha
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Nov 13, 2013 11:04
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em física
Andamento: cursando

Re: Geometria

Mensagempor young_jedi » Qui Set 11, 2014 09:50

As bissetrizes formam 2 angulos um de 140 graus eu outro de 40 graus como ele pede o agudo então a resposta é 40 graus. No meu entendimento o eenunciado esta certo
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}