• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raio do Circulo]

[Raio do Circulo]

Mensagempor Thais Camerino » Seg Jul 07, 2014 15:22

Olá gente! Não sei como resolver este tipo de problema assim proposto.. Gostaria de pedir para alguem ajudar-me a entender este tipo de exercicio..

O raio do circulo {x}^{2}+{y}^{2}-4x+6y-12=0 é :



Agradecida!
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Raio do Circulo]

Mensagempor e8group » Seg Jul 07, 2014 22:44

Dica : Completar quadrados para poder escrever a eq. sob a forma (x-a)^2 + (y-b)^2 = r^2 .

Exemplo :

x^2  -2x    =   [x^2 - 2x +1]  - 1  =  [x-1]^2  - 1
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Raio do Circulo]

Mensagempor Thais Camerino » Ter Jul 08, 2014 02:45

Quando eu fiz, deu x = 2 e y = -3

Depois calculo do raio : R = \sqrt[]{2^2 + \left(-3 \right)^2 - 12}

No que deu 1.. mas o resultado final é 5 :s
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando

Re: [Raio do Circulo]

Mensagempor Thais Camerino » Ter Jul 08, 2014 02:54

Ah, já vi o meu erro. Muito obrigada pela tua Santhiago !!
Thais Camerino
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Abr 27, 2014 00:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Design
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59