• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UNIFESP

Questão da UNIFESP

Mensagempor Jhennyfer » Seg Jun 03, 2013 00:50

Oi boa noite!
Por favor não poste a resolução, só me ajuda entrar no caminho do resultado (:

A questão é...
Se um arco de 60º num circulo I tem o mesmo comprimento de um arco de 40º num circulo II, então, a razão da área do circulo I pela área do circulo II é:
Bom fiz os calculos e até agora só consigo chegar no valor da circunferência
que é 3/2, eu acho.

Circulo I
\frac{2\pi R}{x}=\frac{360}{60}

x= \frac{\pi R}{3}

Circulo II
\frac{2\pi R}{x}=\frac{360}{40}

x= \frac{2\pi R}{9}

com isso a circunferência vale...
\frac{\pi R}{3}= \frac{2\pi R}{9} = \frac{3}{2}

Daí em diante já fiz várias tentativas mas nunca consigo chegar no resultado que é 4/9.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão da UNIFESP

Mensagempor Rafael16 » Seg Jun 03, 2013 11:21

Olá Jhennyfer

A gente sabe que a razão da área vai ser:

\frac{A_{1}}{A_{2}} = \frac{\Pi.R_{1} ^ 2}{\Pi.R_{2} ^ 2} = \frac{R_{1} ^ 2}{R_{2} ^ 2}

Temos agora que achar só a relação entre os raios.
Dica: Trabalhe com radianos.

Tente fazer agora, caso não consiga comenta ai.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}