• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana]

[Geometria Plana]

Mensagempor Micael » Qua Abr 17, 2013 22:29

Observe a figura :
Nela o círculo tem o centro O e raio 6 e OP=16. A reta PT é tangente ao circulo em T eo segmento --TQ é perpendicular á reta OP assim sendo, o comprimento do segmento QP é? da uma ajuda nesse exercicio...

R:13,75
Anexos
geometria.png
geometria.png (6.1 KiB) Exibido 6627 vezes
Editado pela última vez por Micael em Qui Abr 18, 2013 10:21, em um total de 2 vezes.
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana]

Mensagempor nakagumahissao » Qui Abr 18, 2013 08:10

Não tem algo errado nesta questão? OP = 16 e é perguntado quanto vale OP?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Geometria Plana]

Mensagempor Micael » Qui Abr 18, 2013 10:22

Pronto arrumei! .... alguem pode ajudar?
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Plana]

Mensagempor nakagumahissao » Qui Abr 18, 2013 11:47

Veja bem, temos dois triângulos semelhantes:

TQO e TQP. A distância entre OQ será de 6 -x e QP de 16 - 6 + x = 10 + x. Logo:

Imagem

Note que OQ = 6-x, QP = 16 - (6-x) = 10 + x, PTO é um triângulo retângulo pois PT é tangente ao círculo, TQO e TQP são triângulos retângulos. Logo, de PTO tem-se:

u^{2} + 6^{2} = dist(OP)^{2} = 16^{2} = 256

u^{2} + 36 = 256 \Rightarrow u^{2} = 220


Agora, do triângulo OQT tem-se:

h^{2} + (6-x)^{2} = 6^{2} = 36 \Rightarrow h^{2} + 36 - 12x + x^{2} = 36 \Rightarrow

\Rightarrow h^{2} = 36 - 36 + 12x - x^{2} \Rightarrow h^{2} = 12x - x^{2}


Do último triângulo, TQP, tem-se:

h^{2} + (10 + x)^2 = u^{2} = 220 \Rightarrow h^{2} = 220 - 100 - 20x - x^{2}

Igualando h^{2}:

220 - 100 - 20x - x^{2} = 12x - x^{2} \Rightarrow 12x + 20x = 120 \Rightarrow 32x = 120 \Rightarrow x = \frac{15}{4}

Sabendo-se que x = 15/4 e que OP = 16, então a distância QP = 10 + x será de:

QP = 10 + \frac{15}{4} = \frac{40 + 15}{4 }=13,75

Que é o valor procurado!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Geometria Plana]

Mensagempor Micael » Seg Abr 22, 2013 19:15

Muito obrigado pela ajuda... valeu mesmo
Micael
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Jan 31, 2013 00:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D