• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PUC-PR

PUC-PR

Mensagempor Jhennyfer » Ter Abr 09, 2013 14:03

Dois ângulos complementares A e B, sendo A < B, têm medidas na razão de 13 para17. consequentemente, a razão da medida do suplemento do ângulo A para o suplemento do ângulo B vale:
a) 43/47 b)17/13 c)13/17 d)119/48 e)47/43
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PUC-PR

Mensagempor e8group » Ter Abr 09, 2013 19:43

Pelo encunciado temos que :


(a) A + B = 90^{\circ}

(b) \frac{A}{B}= \frac{13}{17} \implies  \begin{cases} A = 13 n \\ B = 17 n  \end{cases} para algum n > 0 .

(c) Tal número n é 3 ,pois (a)+(b) \implies A + B =13 n+ 17n = 30n=  90^{\circ} \iff n= 3 .

(d) O suplemento dos ângulos A e B são ,respectivamente , 180^{\circ} - A = 180^{\circ} - 39^{\circ}  = 141^{\circ} e 180^{\circ} - B = 180^{\circ} - 51^{\circ} = 129^{\circ}

(e) Conclusão :

... complete você .

Tente concluir .

Deve encontar 47/43 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PUC-PR

Mensagempor Jhennyfer » Ter Abr 09, 2013 20:25

Consegui compreender...
Me confundi na parte inicial, por isso não consegui desenvolver o calculo...

Neste outro caso... uso a mesma linha de raciocinio? Estou resolvendo, e está dando uma conta enorme.
(CEFET-CE) Dois ângulos são suplementares. Os 2/3 do maior excedem os 3/4 do menor em 69º. Determine os ângulos:
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PUC-PR

Mensagempor e8group » Ter Abr 09, 2013 20:50

OK.Só uma observação ,post uma única dúvida por tópico ,certo ?

Então , vamos impor que \alpha e \beta são ângulos com \alpha > \beta e \alpha  + \beta = 180^{\circ} . Pelo enunciado "... Os 2/3 do maior excedem os 3/4 do menor em 69º ..." ,nesta parte diz que \frac{2}{3}\alpha -  \frac{3}{4} \beta = 69^{\circ} .

Em resumo temos um sistema de duas equações para duas incógnitas ,precisamos encontrar \alpha e \beta tais que satisfaçam cada equação do sistema \begin{cases} \alpha  + \beta = 180^{\circ} \\  \frac{2}{3}\alpha -  \frac{3}{4} \beta = 69^{\circ}   \end{cases} .

Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PUC-PR

Mensagempor Jhennyfer » Qui Abr 11, 2013 00:52

Ok, eu sei dessa regra e esqueci, desculpa (rs...)
Enfim... Na minha solução 36º e 144º... correto?
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: PUC-PR

Mensagempor e8group » Qui Abr 11, 2013 12:35

Se \alpha = 144^{\circ} e \beta = 36^{\circ} satisfazerem as duas equações ,então sua resposta está correta .

Verificando :

(1) 144^{\circ} + 36^{\circ} = 180^{\circ} (OK !!)

(2) \frac{2}{3}144^{\circ}             -\frac{3}{4}36^{\circ}  = 2 \cdot 48^{\circ} - 3 \cdot 9^{\circ}  =  96^{\circ} -  27^{\circ}   = 69^{\circ} (OK!!) .

Está correto a sua resposta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.