por sauloandrade » Sáb Dez 29, 2012 21:07
Boas pessoal, me deparei com o seguinte problema e não estou conseguindo resolver. Gostaria de pedir a ajuda de vocês para dizer-me onde eu estou errando.
"O Ângulo ADC de um polígono regular ABCDEf...mede 30°.Determine a soma dos ângulos internos desse polígonos.
Então, fiz da seguinte maneira:
Sabemos que Soma dos ângulos internos é:

. Sabemos ainda que o polígono é regular então, se eu pegar a soma dos ângulos internos e dividir pelo número de lados eu obterei a medida de cada ângulo interno.

resolvendo teremos

.
Me quebrei ai, pois o n não pertence ao conjunto dos inteiros.
Onde estou errando? ;-;
-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 11:30
Bom dia .Há um erro no enunciado ,certo ? Você realmente quer achar a soma dos ângulos ineternos ou apenas obter o valor correspondente a este ângulo interno ?
Se for apenas a soma interna destes ângulos , basta aplicar a fórmula

. Como o polígono é regular e, é constituido pelos vertices

,ou seja é um hexagono , possui 6 lados .
Segue que ,

.
Não conseguir compreender sua solução , poderia explicar como chegou a esta conclusão

? comente qualquer coisa .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por sauloandrade » Dom Dez 30, 2012 14:44
Olá santhiago.
O polígono não é um hexágono, pois pelo enunciado, ele é formado pelos vértices ABCDEF... Há uma reticência que significa que o polígono é formado por n vértices, e eu preciso determinar o valor de n para obter a soma dos ângulos internos.
Sobre minha resolução deixa eu explicar com exemplos:
Como eu disse, se eu pegar a soma dos ângulos internos de um polígono REGULAR e dividir por n eu terei o valor de cada ângulo interno. Pegue por exemplo, o quadrado. Sabemos que a soma dos ângulos internos é 360°e possui 4 lados. Dividindo a soma dos ângulos internos (360°) pelo número de lados (4), eu obterei o valor de cada ângulo interno do polígono, no caso 4 ângulos de 90°.
Então aplicando o mesmo raciocínio, teremos:

resolvendo n=2,4.
Isso não é possível, pois não existe polígono com número de lado 2,4. rs.
é ficou confuso por que eu não sei por fração no latex ai eu adiantei um pouco o cálculo, desculpa.
-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 16:14
Ok compreendo .
Nosso objetivo é obter o número de lados ,para calcular a soma interna dos ângulo .
Obs.: Tome cuidado , o ângulo

ser igual a

não implica que cada ângulo interno é igual

.
Observe a figura .
Vamos supor que cada ângulo interno meça

.
Pela nossa hipótese ,

.
Veja a figura como ilustração . Estou supondo que

,mas não necessariamente é verdade .
No triângulo

. Temos

.
No triângulo

.Temos

.
Mas para cada triângulo ,

.Temos que ,
Assim ,

.
Lembrando que ,

implica

.
Conclusão ,
Temos por um lado que ,

. Entretanto por outro lado ,

(n-vezes)
logo ,

.
Resolvendo encontrará

.
Portanto ,

.
Espero que estar certo . Comente qualquer coisa , tem gabarito ? .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por sauloandrade » Dom Dez 30, 2012 17:34
Ahhh obrigado santhiago. Meu erro foi pensar que 30° seria um ângulo interno, o que não é verdade.
Sua resposta bate com o gabarito sim, obrigado

-
sauloandrade
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Out 28, 2012 12:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 30, 2012 17:51
Quando deparar com exercícios como este é importante fazer o desenho . Se permanecer dúvida só postar algo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Ângulos internos do trapézio]
por Gustavo Gomes » Qua Dez 19, 2012 22:37
- 1 Respostas
- 1428 Exibições
- Última mensagem por timoteo

Qui Dez 20, 2012 00:47
Geometria Plana
-
- [Trigonometria]Ângulos Internos
por ALPC » Seg Jul 01, 2013 14:33
- 2 Respostas
- 2271 Exibições
- Última mensagem por ALPC

Seg Jul 01, 2013 15:33
Trigonometria
-
- Angulos internos de um triangulo.
por albtec01 » Sáb Abr 12, 2014 19:19
- 0 Respostas
- 1033 Exibições
- Última mensagem por albtec01

Sáb Abr 12, 2014 19:19
Trigonometria
-
- furg- os números que expressam angulos internos
por Natalie » Sex Set 16, 2011 18:30
- 1 Respostas
- 1692 Exibições
- Última mensagem por MarceloFantini

Sex Set 16, 2011 18:45
Progressões
-
- Calculo dos angulos internos dum triangulo hiperbólico
por Jhenrique » Ter Jul 24, 2012 18:42
- 0 Respostas
- 1811 Exibições
- Última mensagem por Jhenrique

Ter Jul 24, 2012 18:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.