por Jhenrique » Qua Jul 25, 2012 02:51
meus caros, saudações!
Assisti um vídeo do IMPA (um vídeo maravilhoso!) sobre construções geométricas... o Wagner desenhava com régua e compasso qualquer fórmula!
Ele demonstrou, algebricamente e geometricamente, que a média geometrica [x] de dois valores [a, b] é igual a ?ab.
Entretanto, ele também afirmou que a terceira proporcional é igual a média geométrica, ou seja: a/x=x/b <=> x=?ab.
Consultando o google e o site somatematica, notei que a definição de 3ª proporcional não é a/x=x/b <=> x=?ab como o wagner definiu, e sim: a/b=b/x => x=b²/a.
Como assim, é possível ter quantas interpretações para o conceito de 3ª proporcional?
Quem está certo, quem está errado??
agradeço os esclarecimento,
José h
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por DanielFerreira » Dom Ago 05, 2012 16:20
Jhenrique,
segundo a definição,
Uma proporção onde os meios são iguais, um dos extremos é a terceira proporcional do outro extremo, temos:

Analisando a afirmação feita pelo Wagner (com base no que vc disse) pude concluir que é verdadeira, mas, quando

, veja:


Igualando-as:
![\sqrt[]{ab} = \frac{b^2}{a} \\\\\\ \left( \sqrt[]{ab}\right)^2 = \left( \frac{b^2}{a}\right)^2 \\\\\\ ab = \frac{b^4}{a^2} \\\\ a^3b = b^4 \\\\ a^3 = b^3 \\\\ \boxed{\boxed{a = b}} \sqrt[]{ab} = \frac{b^2}{a} \\\\\\ \left( \sqrt[]{ab}\right)^2 = \left( \frac{b^2}{a}\right)^2 \\\\\\ ab = \frac{b^4}{a^2} \\\\ a^3b = b^4 \\\\ a^3 = b^3 \\\\ \boxed{\boxed{a = b}}](/latexrender/pictures/f2e2510ac94135e65e4cbef2bcf0c2ee.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Divisão Proporcional-Grandeza proporcional e inversamente
por AlexandreLuna » Ter Abr 24, 2012 22:10
- 2 Respostas
- 2503 Exibições
- Última mensagem por jrmatematico

Dom Mai 13, 2012 10:02
Matemática Financeira
-
- Divisão proporcional
por karenblond » Seg Ago 29, 2011 23:23
- 3 Respostas
- 2541 Exibições
- Última mensagem por Neperiano

Qua Ago 31, 2011 14:58
Sistemas de Equações
-
- DIVISÃO PROPORCIONAL
por Ailton » Ter Fev 21, 2012 01:47
- 0 Respostas
- 1388 Exibições
- Última mensagem por Ailton

Ter Fev 21, 2012 01:47
Matemática Financeira
-
- Divisão Proporcional
por Raphael Feitas10 » Ter Nov 27, 2012 00:25
- 0 Respostas
- 1552 Exibições
- Última mensagem por Raphael Feitas10

Ter Nov 27, 2012 00:25
Equações
-
- diretamente proporcional
por dandara » Sex Abr 22, 2016 12:49
- 2 Respostas
- 2080 Exibições
- Última mensagem por dandara

Dom Abr 24, 2016 10:14
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.