• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ITA - ângulos , altura h e H

ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Ter Jul 31, 2012 17:36

Olá pessoal, estou com uma dúvida nessa questão do ITA, se eu não me engano é de 1995, mas não tenho lá muita certeza!

(ITA) - Um dispositivo colocado no solo a uma distância d de uma torre dispara dois projéteis em trajetórias retilíneas. O primeiro, lançado sob um ângulo \theta ? (0,\frac{\pi}{4}), atinge a torre a uma altura h. Se o segundo, disparado sob um ângulo 2\theta, atinge-a a uma altura H, a relação entre as duas alturas será:


a) H = \frac{2hd^2}{(d^2-h^2)}

b) H = \frac{2hd^2}{(d^2+h)}

c) H = \frac{2hd^2}{(d^2-h)}

d) H = \frac{2hd^2}{(d^2+h^2)}

e) H = \frac{hd^2}{(d^2+h)}

Bom, tentei resolver aqui, mas acabei emperrando. Vou colocar um desenho pra facilitar o entendimento do meu raciocínio:

ITA - ângulo.png
ITA - ângulo.png (4.47 KiB) Exibido 6101 vezes


x^2 = d^2 + H^2
x = \sqrt{d^2+H^2}

e

y^2 = d^2 + h^2
y = \sqrt{d^2+h^2}

Além disso:

sen\theta=\frac{h}{y} = \frac{h}{\sqrt{d^2+h^2}}

cos\theta = \frac{d}{y}=\frac{d}{\sqrt{d^2+h^2}}

Por fim:

sen 2\theta = \frac{H}{x} >>>>>>>>>>>> 2sen\theta cos\theta = \frac{H}{\sqrt{d^2+H^2}}

Aí, eu substituo os valores de sen\theta e cos\theta, entretanto ,não tenho como isolar o H. Ficaria assim:

\frac{H}{\sqrt{d^2+H^2}} = \frac{2hd}{(d^2+h^2)}

Não consigo isolar o H, entendem. Alguém pode ajudar?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor Russman » Ter Jul 31, 2012 18:10

Você procedeu de maneira correta.

Note que

\frac{H}{\sqrt{d^2 + H^2}} = \frac{2hd}{d^2+h^2}\Rightarrow \frac{H(d^2+h^2)}{2hd}=\sqrt{d^2+H^2}\Rightarrow d^2+H^2 = \frac{H^2(d^2+h^2)^2}{4h^2d^2}

\Rightarrow 4h^2d^4 + 4H^2h^2d^2 = H^2(d^2+h^2)^2 \Rightarrow H^2(-4h^2d^2 + d^4 +h^4+2h^2d^2) = 4h^2d^4

\Rightarrow H^2 =  \frac{4h^2d^4}{(d^2-h^2)^2}\Rightarrow H=\frac{2hd^2}{\left |d^2-h^2  \right |}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: ITA - ângulos , altura h e H

Mensagempor PeterHiggs » Qua Ago 01, 2012 14:49

Opa, é verdade, nossa eu sempre comete esses erros bobos, sempre.

Obrigado Russmann !
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D