• Anúncio Global
    Respostas
    Exibições
    Última mensagem

circunferência inscrita no triângulo

circunferência inscrita no triângulo

Mensagempor lenda » Qua Jul 18, 2012 17:13

O ponto I é o centro da circunferência inscrita no triângulo ABC.Sendo DE paralelo a BC,AB=8 cm e AC= 11 cm,determine o perímetro ADE.
Resposta: 19 cm
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: circunferência inscrita no triângulo

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 17:23

Confira o enunciado (provavelmente ele possui uma figura). Creio que \overline{DE} passe pelo incentro.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: circunferência inscrita no triângulo

Mensagempor lenda » Qua Jul 18, 2012 17:32

Realmente DE passa pelo centro.
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: circunferência inscrita no triângulo

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 18:00

Considere a figura:
Imagem
Por propriedades do incentro, \overline{BI} e \overline{CI} são "bissetrizes".

Note que os ângulos C\widehat{B}I e e e B\widehat{I}D são congruentes pois são alternos internos.

De modo análogo, podemos afirmar que \Delta BDI e \Delta CEI são isósceles.

O perímetro do triângulo ADE é:
AD + DI + EI + AE = AD + DB + EC + AE = AB + AC = 11 + 8
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59