por alfabeta » Sex Mar 09, 2012 20:53
No triângulo ABC da figura abaixo, os segmentos AD e BC são perpendiculares, os ângulos BÂE e EÂC são iguais, as medidas dos segmentos BM e MC são iguais e r é uma reta perpendicular ao segmento BC, passando por M.
Com base nessas informações, julgue os itens:
01) Os triângulos ABM e AMC têm áreas iguais.
02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.
03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.
04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.
Tentativa:
01) verdadeira, pois são divididos pela mediana. Mas como provo isto?
E as outras não sei fazer.
- Anexos
-

- triangulo.gif (3.25 KiB) Exibido 1798 vezes
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Ter Mar 13, 2012 17:36
alfabeta escreveu:No triângulo ABC da figura abaixo, os segmentos AD e BC são perpendiculares, os ângulos BÂE e EÂC são iguais, as medidas dos segmentos BM e MC são iguais e r é uma reta perpendicular ao segmento BC, passando por M.

- triangulo.gif (3.25 KiB) Exibido 1778 vezes
Com base nessas informações, julgue os itens:
01) Os triângulos ABM e AMC têm áreas iguais.
02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.
03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.
04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.
alfabeta escreveu:Tentativa:
01) verdadeira, pois são divididos pela mediana. Mas como provo isto?
E as outras não sei fazer.
Note que tanto ABM quanto AMC possuem a mesma medida para a altura e a mesma medida para a base.
alfabeta escreveu:02) O centro da circunferência que circunscreve o triângulo ABC pertence à reta r.
Veja a definição de circuncentro:
http://pt.wikipedia.org/wiki/Tri%C3%A2ngulo#Mediatrizalfabeta escreveu:03) a.senbeta = b.sen(alfa), onde a e b indicam as medidas dos segmentos EM e AM, respectivamente.
Veja a Lei dos Senos:
http://pt.wikipedia.org/wiki/Lei_dos_senosalfabeta escreveu:04) O raio da circunferência que circunscreve o triângulo ABD mede um terço da medida do lado AB.
Faça uma pesquisa sobre a relação que existe entre a hipotenusa de um triângulo retângulo e o diâmetro da circunferência que circunscreve esse triângulo retângulo.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pontos notáveis de um triÂngulo
por Brufofs » Ter Mar 13, 2012 19:37
- 5 Respostas
- 4874 Exibições
- Última mensagem por Brufofs

Qua Mar 14, 2012 14:46
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 17:01
- 8 Respostas
- 5968 Exibições
- Última mensagem por lenda

Qui Jul 19, 2012 15:38
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 17:23
- 2 Respostas
- 1902 Exibições
- Última mensagem por lenda

Qua Jul 18, 2012 20:20
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 20:57
- 2 Respostas
- 1701 Exibições
- Última mensagem por lenda

Qui Jul 19, 2012 14:53
Geometria Plana
-
- Pontos notáveis do triângulo
por Tmartins » Qua Mai 15, 2013 16:01
- 0 Respostas
- 1018 Exibições
- Última mensagem por Tmartins

Qua Mai 15, 2013 16:01
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.