• Anúncio Global
    Respostas
    Exibições
    Última mensagem

quadrilátero inscrito e angulo

quadrilátero inscrito e angulo

Mensagempor alfabeta » Dom Mar 04, 2012 21:33

Na figura abaixo, encontra-se o quadrilátero ABCD inscrito em uma semicircunferência de centro O,
onde AB é um diâmetro e CD uma corda de comprimento igual ao raio dessa circunferência.
O ângulo agudo formado entre as diagonais desse quadrilátero mede:
Anexos
figura 23.jpg
figura 23.jpg (8.77 KiB) Exibido 4269 vezes
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: quadrilátero inscrito e angulo

Mensagempor MarceloFantini » Seg Mar 05, 2012 01:41

Você tentou unir os pontos C e D com a origem? Quais foram suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: quadrilátero inscrito e angulo

Mensagempor alfabeta » Seg Mar 05, 2012 11:22

Sim, eu uni os pontos e formei os triangulos ADO, DOC e OCB.
Depois não tinha mais conseguido. Mas olhando novamente verifiquei que DOC é equilatero , portanto o angulo é de 60.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}