• Anúncio Global
    Respostas
    Exibições
    Última mensagem

T.Vestibulares

T.Vestibulares

Mensagempor J Hugo » Qua Fev 01, 2012 00:01

kjkjk.jpeg
Foto


Não estou conseguindo desenvolver a questão ......
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando

Re: T.Vestibulares

Mensagempor ant_dii » Qua Fev 01, 2012 00:16

Poste o que você tentou fazer e qual resultado chegou para nós podermos ajudar melhor...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: T.Vestibulares

Mensagempor J Hugo » Qua Fev 01, 2012 00:32

Na questão o lado quadrado e L dai em tao fasso pelo teorema de pitagoras para acha um dos lados do triangulo isosceles depois acho as outras
dai em tao acho a area do triangulo mais dai em diante nao acha o resultado certo...
se alguem soube pesso ajuda
Vlww
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando

Re: T.Vestibulares

Mensagempor Arkanus Darondra » Qua Fev 01, 2012 00:49

Temos 4 triângulos: O destacado, dois iguais e um pequeno.
Considerando área do triângulo = \frac12.b.h
Vamos chamar os dois iguais de a, cada um. O pequeno, de b.
Área de a: \frac12.\frac{l}{2}.l = \frac{l^2}{4}
2a = \frac{l^2}{2}

Área de x: \frac12.\frac{l}{2}.\frac{l}{2} = \frac{l^2}{8}

Sendo assim:
2a+x=\frac{5l^2}{8}

Por meio de uma regra de três, podemos calcular o percentual de "2a+x" do total da área do quadrado, que é l^2.
Esse percentual é de 62,5%
Então o percentual do triângulo em destaque é 100% - 62,5% = 37,5%
Portanto, alternativa B. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: T.Vestibulares

Mensagempor ant_dii » Qua Fev 01, 2012 01:02

J Hugo escreveu:Na questão o lado quadrado e L dai em tao fasso pelo teorema de pitagoras para acha um dos lados do triangulo isosceles depois acho as outras
dai em tao acho a area do triangulo mais dai em diante nao acha o resultado certo...
se alguem soube pesso ajuda
Vlww


Faça como o Arkanus fez. Na realidade você nem precisa encontrar o lado do triângulo de dentro. O que você precisa é saber quanto mede a base e altura dos triângulos de fora, digamos assim, e isso é dado, já que você colocou o lado como l. E foi o que arkanus fez...

Em matemática é interessante escolher sempre o caminho mais simples...
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: T.Vestibulares

Mensagempor J Hugo » Qua Fev 01, 2012 10:49

Vlw Cara Tudo de Bom...
J Hugo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jan 29, 2012 12:01
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecníco em Informatica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)