• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Medianas

Medianas

Mensagempor Mandu » Dom Out 24, 2010 20:32

Como provar que a soma das medianas é menor que o perímetro e maior que o semiperímetro?
Mandu
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Set 20, 2010 14:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Medianas

Mensagempor Adriano Tavares » Sáb Dez 31, 2011 17:04

Olá,Mandu.

Congruência de triângulos.png
Medianas
Congruência de triângulos.png (4.29 KiB) Exibido 3652 vezes


Como vale para qualquer triângulo, vamos considerar o triângulo equilátero, pois os pontos notáveis coincidem.

Note que as alturas do triângulo são também medianas.

AB=AC=BC=2l

AM_1=BM_2=CM_3=M

S_m=3M \Rightarrow S_m=3.\frac{2\sqrt{3}l}{2} \Rightarrow S_m=3\sqrt{3}l

2p--> perímetro

2p=6l

Sendo 6>3\sqrt{3} conclui-se que 6l>S_m

b)

p--> semi-perímetro

p=3l

Sendo p< 3\sqrt{3} tem-se que S_m>p
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)