• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ÁREA DO LOSANGO

ÁREA DO LOSANGO

Mensagempor L_lawliet » Qui Dez 08, 2011 23:01

A área de um losango é 96 cm (quadrados) e uma das suas diagonais mede 12 cm. O perímetro desse losango mede:
a) 40 cm
b) 64 cm
c) 96 cm
d) 100 cm

minha resolução:
12 * 8= 96 (hipotese descartada por dar maior q o provável perimetro)
12+12+8+8=40
L_lawliet
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 08, 2011 22:48
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: formado

Re: ÁREA DO LOSANGO

Mensagempor MarceloFantini » Sex Dez 09, 2011 18:10

Chutar não é o caminho certo. Lembre-se que a área total do losango pode ser descrita como quatro vezes a área de um dos triângulo que o compõe, que por sua vez tem base e altura iguais a metade de cada uma das diagonais, respectivamente. Tente usar isso para resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ÁREA DO LOSANGO

Mensagempor L_lawliet » Sex Dez 09, 2011 21:13

mt obrigado! ajudou mt! consegui a resposta correta com os seguintes cálculos:
área de cada triângulo=24 (96/4)
A=B*h/2
24=x*6/2 (simplificando)
24=x*3
24/3=x
x=8
base=8
altura=12/2=6
(aplicando o teorema de pitágoras)
{6}^{2} + {8}^{2} = \sqrt[2]{x}
36+64 = \sqrt[2]{x}
10=x
perímetro= 10*4= 40

obrigado acho que é isso, espero que entenda os meus cálculos :$
L_lawliet
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 08, 2011 22:48
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: formado

Re: ÁREA DO LOSANGO

Mensagempor MarceloFantini » Sex Dez 09, 2011 22:11

Só tome cuidado na hora de escrever, é x^2 = 8^2 +6^2 e não \sqrt{x} = 8^2 +6^2. Fora isso está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ÁREA DO LOSANGO

Mensagempor L_lawliet » Ter Dez 20, 2011 20:59

Ah... Obrigado! não tinha me dado conta.
L_lawliet
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Dez 08, 2011 22:48
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.