• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação de áreas de triangulos sem medidas

Relação de áreas de triangulos sem medidas

Mensagempor carcleo » Qua Nov 16, 2011 07:53

Pessoal, bom dia.

A dúvida é a seguinte:

Tenho a figura abaixo onde não são pássadas nehum valor:

Imagem

Gostaria de saber, qual é a razão entre as areas do trinagulo ABC e o triângulo AB'C'.

Segundo a resposta do exercício, a resposta é:

S=1/9 . S1

Mas porque?

Grato a todos.
carcleo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Nov 16, 2011 07:35
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Contabilidade
Andamento: formado

Re: Relação de áreas de triangulos sem medidas

Mensagempor SsEstevesS » Dom Nov 27, 2011 10:13

Ele nao fala qual o tipo de triangulo? nao fala nadinha nadinha?
SsEstevesS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Nov 27, 2011 10:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: CEFET
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.