• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raio da Circunferência

Raio da Circunferência

Mensagempor maria cleide » Qua Ago 31, 2011 22:00

Um segmento AB de 8cm é perpendicular ao diâmetro CD de uma circonferência, tendo suas extremidades no diâmetro e na circunferência. O diâmetro fica, então, separado em dois segmentos cuja diferença entre eles é de 12 cm. Dessa forma, a medida do raio da circonferência é:
A-( )4cm
B-( )16cm
C-( )20cm
D-( )10cm
Anexos
digitalizar0006.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Raio da Circunferência

Mensagempor Renato_RJ » Qui Set 01, 2011 01:54

Campeão, eu achei 10 cm como raio... Tem o gabarito para ver se acertei ?

Fiz o seguinte, se você reparar existe um triângulo ACD retângulo em A, pois como CD é o diâmetro do círculo então o ângulo  tem 90º. Logo, usando a
relação do triângulo que diz que o quadrado da altura é igual ao produto dos lados, temos:

AB^2 = CB \cdot BD \, \Rightarrow \, CB \cdot BD = 64

Mas o problema nos diz que a diferença entre CB e BD é de 12 cm, logo temos:

CB \cdot BD = 64 \, \Rightarrow \, CB = \frac{64}{BD}
CB - BD = 12

Substituindo CB na segunda equação temos:

\frac{64}{BD} - BD = 12 \, \Rightarrow \, 64 - BD^2 -12BD = 0

Cujas as raízes são: -16 e 4. Como estamos lidando com medidas métricas, logo -16 não nos serve, sobrando apenas BD = 4 cm, o que nos dá um CB = 16 cm, somando CB e BD para achar o diâmetro temos CB + BD = 20 cm => raio = 10 cm.

Se cometi algum erro, me perdoe...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Raio da Circunferência

Mensagempor maria cleide » Qua Out 12, 2011 11:35

Está correto, obrigada.
Maria Cleide.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.