por maria cleide » Qua Ago 31, 2011 22:00
Um segmento

de 8cm é perpendicular ao diâmetro

de uma circonferência, tendo suas extremidades no diâmetro e na circunferência. O diâmetro fica, então, separado em dois segmentos cuja diferença entre eles é de 12 cm. Dessa forma, a medida do raio da circonferência é:
A-( )4cm
B-( )16cm
C-( )20cm
D-( )10cm
- Anexos
-

-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por Renato_RJ » Qui Set 01, 2011 01:54
Campeão, eu achei 10 cm como raio... Tem o gabarito para ver se acertei ?
Fiz o seguinte, se você reparar existe um triângulo ACD retângulo em A, pois como CD é o diâmetro do círculo então o ângulo  tem 90º. Logo, usando a
relação do triângulo que diz que o quadrado da altura é igual ao produto dos lados, temos:

Mas o problema nos diz que a diferença entre CB e BD é de 12 cm, logo temos:


Substituindo CB na segunda equação temos:

Cujas as raízes são: -16 e 4. Como estamos lidando com medidas métricas, logo -16 não nos serve, sobrando apenas BD = 4 cm, o que nos dá um CB = 16 cm, somando CB e BD para achar o diâmetro temos CB + BD = 20 cm => raio = 10 cm.
Se cometi algum erro, me perdoe...
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por maria cleide » Qua Out 12, 2011 11:35
Está correto, obrigada.
Maria Cleide.
-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- circunferência de raio
por Ana Maria da Silva » Qui Jun 13, 2013 14:38
- 2 Respostas
- 1559 Exibições
- Última mensagem por Ana Maria da Silva

Qui Jun 13, 2013 16:53
Geometria Analítica
-
- Cálculo do raio da circunferência
por Ulisses Tavares » Ter Jan 21, 2014 01:37
- 0 Respostas
- 2254 Exibições
- Última mensagem por Ulisses Tavares

Ter Jan 21, 2014 01:37
Geometria Analítica
-
- Qual o raio da circunferência
por IsadoraLG » Dom Mai 25, 2014 23:40
- 1 Respostas
- 3263 Exibições
- Última mensagem por DanielFerreira

Qua Jul 16, 2014 21:13
Álgebra Elementar
-
- Raio, área e comprimento da circunferência
por lu123 » Qui Nov 18, 2010 18:20
- 2 Respostas
- 2389 Exibições
- Última mensagem por lu123

Qui Nov 18, 2010 21:30
Geometria Plana
-
- [Circunferências] Raio de circunferência ex-inscrita
por albertns » Qua Nov 30, 2011 12:26
- 0 Respostas
- 3221 Exibições
- Última mensagem por albertns

Qua Nov 30, 2011 12:26
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.