• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Babucha e seu pasto

Babucha e seu pasto

Mensagempor maria cleide » Sáb Ago 27, 2011 15:35

Babucha, uma cabra, está amarrada em em canto de um barracão de base retangular. Ela está com tanta fome que já esticou a corda até o máximo, tentando pastar na melhor parte do terreno. Se o barracão, que está fechado, tem 5m por 4m e a corda tem 6m, qual é a área aproximada, em torno do barracão, em que Babucha poderá pastar?
Considere
\pi=3,14
A.( )93,040m^2
B.( )88,705m^2
C.( )113,040m^2
D.( )77,841^m^2

Área total: 113,04
Percebi que se dividir a circunferencia em 4, ela poderá pastae em três quartos desta circunferência, o equivalente a 84,78cm^2, mas não sei continuar.
Anexos
digitalizar0005-2.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Babucha e seu pasto

Mensagempor Caradoc » Sáb Ago 27, 2011 17:41

Você tem que considerar as dimensões do barracão.
A cabra poderá pastar em todo o círculo de raio 6 m, menos na parte onde fica o barracão, ou seja, um retângulo de 5 m por 4 m.
Analisando mais precisamente, haveria um pedacinho do barracão que ficaria para fora do círculo, mas como o exercício pede uma área aproximada, então temos que a área da pastagem é a área do círculo menos a área do barraco:

Ap = Ac - Ab
Ap = ( 3,14\cdot(6)^2 ) - (5\cdot 4)
Ap = 93,04 m^2
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.