por plugpc » Qui Ago 18, 2011 20:39
A entrada de um ginásio de esportes tem o formato de um arco de parábola sustentado por 4 colunas AB, CD, EF e GH, conforme figura abaixo. As colunas AB e GH têm 3 metros de comprimento cada e a distância entre elas é de 18 metros. CD tem 8 m de comprimento e EF tem 11 m. Se a coluna CD está a 3 m de AB, pode-se afirmar que a coluna EF encontra-se distante de AB
A) 8 metros.
B) 9 metros.
C) 10 metros.
D) 11 metros.
E) 12 metros.
Eu resolvi esse problema e encontrei a solução 10 e o gabarito do mesmo me diz que é 12m eu gostaria de sua ajuda.
Obrigado antecipadamente.
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
plugpc
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Jul 07, 2008 22:00
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matemática
- Andamento: cursando
por Molina » Qui Ago 18, 2011 22:28
Boa noite.
Não sei se você fez assim, mas eu transformei o arco (parábola) numa equação do 2º grau. Ou seja, no seu desenho o ponto A é a origem (0,0). Com isso, posso definir alguns outros pontos que me auxiliaram a achar a equação que gera a parábola:
O ponto B é (0,3)
O ponto D é (3,8)
O ponto H é (18,3)
... onde os pontos são da forma (x,y).
Esta parábola é da forma

e através do ponto
B, temos que:


Já sabemos então que a equação é do tipo

Precisamos descobrir os valores de
a e
b desta equação. Para isso vamos usar os outros prontos. De acordo com o ponto D, temos:


(equação 1)E, de acordo com o ponto H, temos:


(equação 2)Isolando b na segunda equação e substituindo na primeira, temos:




Voltando a equação 1 encontramos

.
Ou seja, nossa equação é:

Não sabemos o coordenada x no ponto F, mas sabemos a coordenada y neste ponto, que é 11.
Descobrindo x, descobriremos o que precisamos:




Achando
12 como uma das raízes.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana
por claudia » Qui Out 23, 2008 16:11
- 1 Respostas
- 8525 Exibições
- Última mensagem por admin

Ter Out 28, 2008 16:47
Geometria Plana
-
- Geometria plana
por Rayanne07 » Qua Jan 13, 2010 17:40
- 3 Respostas
- 4447 Exibições
- Última mensagem por Rayanne07

Sex Jan 15, 2010 10:46
Geometria Plana
-
- Geometria Plana
por MelvinMyster » Sex Ago 13, 2010 10:07
- 1 Respostas
- 4639 Exibições
- Última mensagem por alexandre32100

Sex Ago 13, 2010 13:15
Geometria Plana
-
- Geometria plana
por Paulo A G » Qua Jan 26, 2011 16:11
- 0 Respostas
- 2386 Exibições
- Última mensagem por Paulo A G

Qua Jan 26, 2011 16:11
Geometria Plana
-
- geometria plana
por Abner » Seg Jan 31, 2011 17:53
- 3 Respostas
- 3417 Exibições
- Última mensagem por Abner

Ter Fev 01, 2011 17:31
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.