• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana

Geometria Plana

Mensagempor plugpc » Qui Ago 18, 2011 20:39

A entrada de um ginásio de esportes tem o formato de um arco de parábola sustentado por 4 colunas AB, CD, EF e GH, conforme figura abaixo. As colunas AB e GH têm 3 metros de comprimento cada e a distância entre elas é de 18 metros. CD tem 8 m de comprimento e EF tem 11 m. Se a coluna CD está a 3 m de AB, pode-se afirmar que a coluna EF encontra-se distante de AB

A) 8 metros.
B) 9 metros.
C) 10 metros.
D) 11 metros.
E) 12 metros.

Eu resolvi esse problema e encontrei a solução 10 e o gabarito do mesmo me diz que é 12m eu gostaria de sua ajuda.
Obrigado antecipadamente.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

plugpc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 07, 2008 22:00
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matemática
Andamento: cursando

Re: Geometria Plana

Mensagempor Molina » Qui Ago 18, 2011 22:28

Boa noite.

Não sei se você fez assim, mas eu transformei o arco (parábola) numa equação do 2º grau. Ou seja, no seu desenho o ponto A é a origem (0,0). Com isso, posso definir alguns outros pontos que me auxiliaram a achar a equação que gera a parábola:

O ponto B é (0,3)

O ponto D é (3,8)

O ponto H é (18,3)

... onde os pontos são da forma (x,y).

Esta parábola é da forma y=ax^2+bx+c e através do ponto B, temos que:

y=ax^2+bx+c

3=a \cdot 0^2+b\cdot 0+c \Rightarrow c = 3

Já sabemos então que a equação é do tipo y=ax^2+bx+3

Precisamos descobrir os valores de a e b desta equação. Para isso vamos usar os outros prontos. De acordo com o ponto D, temos:

y=ax^2+bx+3

8=a \cdot 3^2+b \cdot 3+3

8=9a +3b+3 \Rightarrow 9a + 3b = 5 (equação 1)

E, de acordo com o ponto H, temos:

y=ax^2+bx+3

3=a \cdot 18^2+b \cdot 18+3

0=324a +18b \Rightarrow 18a + b = 0 (equação 2)

Isolando b na segunda equação e substituindo na primeira, temos:

9a + 3b = 5

9a + 3 \cdot (-18a) = 5

9a - 54a = 5

-45a = 5 \Rightarrow a =- \frac{5}{45} = - \frac{1}{9}

Voltando a equação 1 encontramos b = 2.

Ou seja, nossa equação é: y = - \frac{1}{9}x^2 + 2x + 3

Não sabemos o coordenada x no ponto F, mas sabemos a coordenada y neste ponto, que é 11.

Descobrindo x, descobriremos o que precisamos:

y = - \frac{1}{9}x^2 + 2x + 3

11 = - \frac{1}{9}x^2 + 2x + 3

0 = - \frac{1}{9}x^2 + 2x - 8

x^2 - 18x + 72 = 0

Achando 12 como uma das raízes. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59