• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[triângulo equilátero] Questão Colégio Naval 2010

[triângulo equilátero] Questão Colégio Naval 2010

Mensagempor Joan » Sex Jul 22, 2011 18:42

ABC é um triângulo equilátero. Seja P um ponto do plano de ABC e exterior ao triângulo de tal forma que PB intersecta AC em Q(Q está entre A e C). Sabendo que o Ângulo APB é igual a 60º, que PA = 6 e PC = 8, a medida de PQ será?

...bem eu fiz o desenho do enunciado que verão na figura, e nao consigo imaginar mais nada.

Imagem

http://imageshack.us/photo/my-images/808/questo3.png/


desde já grato.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão Colégio Naval 2010, ajuda por favor.

Mensagempor FilipeCaceres » Sex Jul 22, 2011 20:09

Olá Joan,

Vou lhe pedir para usar as ferramentas do fórum para postar suas figuras, veja que é simples, basta você clicar em Anexar Arquivo que fica na parte inferior esquerdo, coloquei sua figura anexada abaixo.

CN2010.GIF
CN2010.GIF (7.25 KiB) Exibido 3553 vezes

Como você já fez a figura agora basta fazer o seguinte:
1º) Faça a semelhança \Delta CPQ\sim \Delta BQA
\frac{QP}{AQ}=\frac{6}{l}

2º) Faça a semelhança \Delta CQB\sim \Delta PQA
\frac{QP}{QC}=\frac{8}{l}

Isolando AQ e QC e substituindo em:
AQ+QC=l

Você encontrará a resposta \boxed{QP=\frac{24}{7}}

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Questão Colégio Naval 2010, ajuda por favor.

Mensagempor Joan » Sáb Jul 23, 2011 01:03

FilipeCaceres escreveu:Olá Joan,

Vou lhe pedir para usar as ferramentas do fórum para postar suas figuras, veja que é simples, basta você clicar em Anexar Arquivo que fica na parte inferior esquerdo, coloquei sua figura anexada abaixo.

CN2010.GIF

Como você já fez a figura agora basta fazer o seguinte:
1º) Faça a semelhança \Delta CPQ\sim \Delta BQA
\frac{QP}{AQ}=\frac{6}{l}

2º) Faça a semelhança \Delta CQB\sim \Delta PQA
\frac{QP}{QC}=\frac{8}{l}

Isolando AQ e QC e substituindo em:
AQ+QC=l

Você encontrará a resposta \boxed{QP=\frac{24}{7}}

Abraço.


Amigo desde já obrigado...

mais vc faz multiplicação crusada?? para achar??

desculpe-me se a pergunta for idiota amigo mais preciso muito aprender...

desde já muitissimo grato.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão Colégio Naval 2010, ajuda por favor.

Mensagempor Joan » Sáb Jul 23, 2011 11:34

Obrigado. Consegui.
Joan
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Jul 22, 2011 18:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?