• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrar Ponto A pela função ArcTangente

Encontrar Ponto A pela função ArcTangente

Mensagempor nerabil » Seg Jan 03, 2011 21:03

Olá Mestres, um abençoado 2011 a todos!

Tenho o seguinte problema:
Preciso encontrar o ângulo \theta ou o ângulo \alpha, para aplicar a função ArcTangente e obter o ponto A(x,y) pelos senos e cossenos...
Dados os pontos C e B, e o cateto b desejo obter o ponto A de modo que obtenha um triângulo retângulo.
o Ponto D obtenho facilmente pelos seno e cosseno dos ângulos obtidos pela função ArcTangente dos pontos C e B.
A distância do cateto "b" sempre será igual (valor fixo), mas a hipotenusa "a" é variável, bem como os pontos B e C tornando meu angulo \alpha sempre variável.

desde já agradeço...
Anexos
Triângulo ArcTan.png
Triângulo ArcTan.png (5.05 KiB) Exibido 2555 vezes
nerabil
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jan 03, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo Processamento de dados
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor MarceloFantini » Ter Jan 04, 2011 10:52

Bom, basta pegar traçar uma reta que passa por C e que seja tangente a circunferência de centro em B e raio b. O triângulo formado será sempre retângulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor nerabil » Ter Jan 11, 2011 03:50

ok, como chego no ângulo theta ou \alpha, ou ainda como chego no ponto A(x,y), seja apartir da equação da circunferência ou outro meio?
Terei que programar essa função para descobrir o A(x,y). Imagino que terei que fazer iterações com cada um dos pontos da circunferência testando se a reta CA é tangênte à circunferência.
É esta minha questão, não vou traçar uma reta manualmente para tangenciar a circunferência, preciso dos meios para achar ponto A(x,y) ou ainda o ângulo theta ou \alpha.
nerabil
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jan 03, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo Processamento de dados
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor MarceloFantini » Ter Jan 11, 2011 11:42

Provavelmente não vai ajudar, mas \theta = 180^{\arc} - \alpha. E sim, não sei muito de programação mas testar se a reta CA é tangente deve ser um meio, só que talvez isso mude o problema pra quantidade de memória.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Encontrar Ponto A pela função ArcTangente

Mensagempor Renato_RJ » Ter Jan 11, 2011 15:47

Tira uma dúvida, o ponto D está na mesma reta que os pontos B e C ?? Se sim, já pensou em prolongar a reta AC até um ponto E perpendicular ao ponto D e, com isso, você teria dois triângulos semelhantes, o triângulo DEC e o triângulo BAC, logo o ângulo alfa sairia por semelhança.

Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.