• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área Sombreada

Área Sombreada

Mensagempor Balanar » Sáb Nov 13, 2010 22:37

Determine a área da região, sombreada em função da área "k" do paralelogramo ABCD no caso a seguir, sabendo que os pontos assinalados sobre cada lado o dividem em partes de medidas iguais.
Imagem

Resolução:
Imagem
Não entendi a resolução.
Balanar
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Qua Dez 03, 2008 07:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Área Sombreada

Mensagempor Jefferson » Qui Nov 18, 2010 12:58

Todo paralelogramo se origina da deformação de um retângulo. Simplificando, todo retângulo possui lados opostos iguais e ângulos internos iguais a 90 graus. No paralelogramo, tal como no retângulo,os lados opostos são iguais. Mas os ângulos internos são diferentes de 90 graus. Mas, como nem tudo esta perdido. Eu deformo o ângulo, mas ele continua ocupando a mesma área. Beleza, então área do paralelogramo = área do retângulo que deu origem = base x altura.
Nesse seu paralelogramo a base esta dividida em 6 partes. Chamando cada parte de x.
Base = 6x
altura = h
área do paralelogramo = k
Concluímos que x.h = K/6
A partir dai foi criado um trapézio de base menor = x, base maior = 2x e altura a mesma do paralelogramo.
como sabemos, a área do trapézio é dada pela semi soma das bases multiplicada pela altura.
entao: Chamando área do trapézio de A.

A = ( x +2x)/2 isto tudo multiplicado por h.
A = (3xh )/2
como xh = K/6
A = (3k)/(6.2)
A= K/4
Jefferson
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 16, 2010 23:18
Localização: Vila Velha - ES
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.