• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[volume do cubo] Soma dos volumes das infinitas caixas

[volume do cubo] Soma dos volumes das infinitas caixas

Mensagempor Priscilamoraes307 » Sex Ago 10, 2012 23:14

Considere a seguinte figura que mostra uma sequência de quadrados, em que o lado L do primeiro é o dobro do lado do segundo; o lado do segundo é o dobro do lado do terceiro e assim indefinidamente.
Esses quadrados representam as bases de caixas retangulares, todas com 1 m de altura.

Nessas condições, é CORRETO afirmar que a soma S dos volumes de todas essas infinitas caixas é
A) infinita.
B) um número finito, porém muito grande.
C) um número entre 2L2 e 3L2.
D) um número entre L2 e 2L2.

image002.jpg
image002.jpg (5.14 KiB) Exibido 2059 vezes
Editado pela última vez por Priscilamoraes307 em Sáb Ago 11, 2012 16:02, em um total de 1 vez.
Priscilamoraes307
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 01, 2012 20:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [volume do cubo] Somas do volumes das infinitas caixas

Mensagempor MarceloFantini » Sáb Ago 11, 2012 00:28

Sim, você deve.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [volume do cubo] Somas do volumes das infinitas caixas

Mensagempor Russman » Sáb Ago 11, 2012 16:08

O volume da n-ésima caixa é dado por

V_n=L_n^3.

Para n=1 temos L_1=L. Para n=2, temos L_2 = L/2. Para n=3, temos L_3 = (L/2)/2 = L/4. Assim, sucessivamente. Portanto, podemos supor que

L_n = L\left( \frac{1}{2}\right)^{(n-1)}

e, disso,

V_n = L^3\left( \frac{1}{8}\right)^{(n-1)}.

Esta é uma P.G. de razão 1/8<1 e primeiro termo L^3. Logo, efetuando a soma infinita de seus termos, obtemos

S = \frac{L^3}{1-\frac{1}{8}} = \frac{8}{7}L^3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.