por Priscilamoraes307 » Sex Ago 10, 2012 23:14
Considere a seguinte figura que mostra uma sequência de quadrados, em que o lado L do primeiro é o dobro do lado do segundo; o lado do segundo é o dobro do lado do terceiro e assim indefinidamente.
Esses quadrados representam as bases de caixas retangulares, todas com 1 m de altura.
Nessas condições, é CORRETO afirmar que a soma S dos volumes de todas essas infinitas caixas é
A) infinita.
B) um número finito, porém muito grande.
C) um número entre 2L2 e 3L2.
D) um número entre L2 e 2L2.

- image002.jpg (5.14 KiB) Exibido 2034 vezes
Editado pela última vez por
Priscilamoraes307 em Sáb Ago 11, 2012 16:02, em um total de 1 vez.
-
Priscilamoraes307
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Jun 01, 2012 20:15
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sáb Ago 11, 2012 00:28
Sim, você deve.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Russman » Sáb Ago 11, 2012 16:08
O volume da

-ésima caixa é dado por

.
Para

temos

. Para

, temos

. Para

, temos

. Assim, sucessivamente. Portanto, podemos supor que

e, disso,

.
Esta é uma P.G. de razão

e primeiro termo

. Logo, efetuando a soma infinita de seus termos, obtemos

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3492 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5649 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
-
- volume do cubo
por irineu junior » Sex Mar 12, 2010 21:32
- 1 Respostas
- 1846 Exibições
- Última mensagem por Elcioschin

Sáb Mar 13, 2010 15:06
Geometria Espacial
-
- [Volume de Pirâmides internas à um cubo]
por Gustavo Gomes » Sáb Fev 15, 2014 22:01
- 1 Respostas
- 2604 Exibições
- Última mensagem por young_jedi

Dom Fev 16, 2014 19:41
Geometria Espacial
-
- Sequencias e series infinitas
por Buda » Dom Out 30, 2011 00:46
- 2 Respostas
- 2049 Exibições
- Última mensagem por LuizAquino

Dom Out 30, 2011 12:53
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.