por raimundoocjr » Qui Ago 02, 2012 22:13
1. Uma pirâmide de cartolina tem 25 cm de altura. Sua base é um hexágono regular construído num círculo de 6 cm de raio. Calcule quantos centímetros cúbicos de areia cabem nessa pirâmide.
Tentativa de Resolução;

Considerando a idéia geral, tem-se:
tg60º=(c.o./c.a.)??3=(6/x)
?3=(6/x)?x=2?3 cm²
At=(l²?3)4?At=[(2x)²?3]/4
At=[(2.2?3)²?3]/4?At=12?3 cm²
Ah=6.At?Ah=6.(12?3)
Ah=6.12?3?Ah=72?3 cm²
Vpir=(Ab.h)/3?Vpir=(72?3.25)/3
Vpir=(72?3.25)/3?Vpir=600?3 cm³
Gabarito: 450?3 cm³
-
raimundoocjr
-
por MarceloFantini » Qui Ago 02, 2012 23:04
Você construiu um círculo num hexágono, é o contrário. O hexágono deve estar dentro do círculo. Tente refazer usando o método.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria] Pirâmide
por rola09 » Dom Mar 18, 2012 13:40
- 5 Respostas
- 2775 Exibições
- Última mensagem por LuizAquino

Seg Mar 19, 2012 00:18
Geometria Espacial
-
- Geometria Analitica Volume da piramide
por Diego Silva » Sex Ago 02, 2013 23:39
- 1 Respostas
- 4064 Exibições
- Última mensagem por mecfael

Dom Ago 18, 2013 22:58
Geometria Analítica
-
- piramide
por Gir » Ter Set 22, 2009 12:01
- 2 Respostas
- 2737 Exibições
- Última mensagem por Gir

Qua Set 23, 2009 11:02
Geometria Espacial
-
- Pirâmide
por renataf » Seg Nov 29, 2010 10:06
- 3 Respostas
- 4402 Exibições
- Última mensagem por fttofolo

Seg Nov 29, 2010 11:09
Geometria Espacial
-
- Pirâmide
por Ani » Dom Dez 05, 2010 15:12
- 4 Respostas
- 3356 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 21:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.