por liviozanol » Qua Mai 09, 2012 00:30
Boa noite!
Tem muito tempo que não exercito minha trigonometria (acho que desde o segundo grau) e preciso de um auxílio. Será que alguma alma caridosa pode me ajudar?
Tenho um segmento de reta AB em um plano determinado através dos pontos (x1,y1) e (x2,y2). Preciso saber as coordenadas (x1',y1') e (x2',y2') de um outro segmento de reta CD de mesmo tamanho paralelo a AB e distanciado em 5 deste. Gostaria de saber qual fórmula devo utilizar para saber os pontos " X' e Y' " do segmento CD.
Sei que para saber o tamanho de AB basta usar o teorema de pitágoras, mas como achar as coordenadas de CD?
Figura em anexo.
Ficarei muito grato se alguém puder ajudar.
- Anexos
-

- segmentos paralelos
- segmentos paralelos.png (5.53 KiB) Exibido 1167 vezes
-
liviozanol
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mai 09, 2012 00:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: c. da computacao
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Achar equaçao da reta (Derivadas)
por ewald » Qui Jun 02, 2011 19:10
- 6 Respostas
- 3611 Exibições
- Última mensagem por Fabio Cabral

Ter Jun 07, 2011 10:47
Cálculo: Limites, Derivadas e Integrais
-
- Achar a Equação de uma reta tangente
por Gabriela Amaral » Dom Set 10, 2017 13:41
- 1 Respostas
- 3036 Exibições
- Última mensagem por Gabriela Amaral

Dom Set 10, 2017 18:47
Cálculo: Limites, Derivadas e Integrais
-
- [reta vertical e horizontal]não consigo achar o valor.
por marcosmuscul » Qui Abr 04, 2013 17:34
- 1 Respostas
- 1900 Exibições
- Última mensagem por Russman

Qui Abr 04, 2013 18:19
Cálculo: Limites, Derivadas e Integrais
-
- Como achar 1/z de z = cos@ - isen@?
por supertag » Qua Jun 08, 2011 18:05
- 2 Respostas
- 1811 Exibições
- Última mensagem por supertag

Sex Jun 10, 2011 12:42
Números Complexos
-
- Como achar a função
por vitor_palmeira » Sex Nov 18, 2011 15:06
- 0 Respostas
- 1215 Exibições
- Última mensagem por vitor_palmeira

Sex Nov 18, 2011 15:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.