Por favor, me ajudar a resolver a seguinte questão:
Um tanque cilindrico, cheio de combustível, de raio igual a 1 m e altura igual a 4m ao ser suspenso por um cabo de aço fixado no ponto P, inclinou-se até a posição mostrada na figura, parte do combustível foi derramada, de modo que o restante ficou nivelado como se vê na figura. A quantidade de combustível que restou no tanque foi?
Eu tentei fazer, porém a resposta não bate com o gabarito. Eu fiz o seguinte: achei o volume do cilindro quando este estava reto, o que deu igual a 12,56 metros cúbico. Quando o cilindro ficou inclinado a parte vazia se assemelha a um cone, daí eu achei o volume deste cone que daria igual a 2,09 metros cúbicos. Assim, reduzindo o volume do cilindro (quando reto) do volume do cone (parte vazia) eu encontraria a quantidade de combustível que sobrou que, na minha resposta daria 10,47 metros cúbicos. Porém o gabarito é 9,42 metros cúbico. Aí eu pergunto: onde é que eu estou errando??
P.S: A imagem segue em anexo.
Att. Obrigada.

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.