• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cilindro e esfera

Cilindro e esfera

Mensagempor karol-1901 » Qui Out 07, 2010 18:30

Considere um retângulo de altura h e base b e duas circunferências com diâmetro h e centros nos lados do retângulo, conforme a figura a seguir. Seja z um eixo que passa pelo centro destas circunferencias. Calcule a area do solido gerado pela rotação da região hachurada em torno do eixo z

http://oi55.tinypic.com/351dgcx.jpg

eu tentei faze a area lateral do cilindro menos a area da esfera, mas não deu certo. Não sei se este meu pensamento esta certo por favor me ajudem.

GABARITO : \pi h (b + h)
karol-1901
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 07, 2010 17:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cilindro e esfera

Mensagempor alexandre32100 » Sex Out 08, 2010 13:20

De fato, este sólido seria um cilindro com duas semi esferas nas bases. Veja que esta duas semiesferas somadas têm a área de uma das esferas de raio \dfrac{h}{2}, ou seja A_{cavidades}=\dfrac{4\cdot\pi\cdot h^2}{2^2}. Por outro lado, a área do sólido se dá por A_t=A_{cilindro}+A_{cavidades} ou
A_t=\dfrac{2\pi\cdot h\cdot b}{2}+\dfrac{4\cdot\pi\cdot h^2}{2^2}=\pi \cdot h \cdot b+\pi\cdot h^2=\pi\cdot h\cdot (b + h)
alexandre32100
 

Re: Cilindro e esfera

Mensagempor karol-1901 » Sex Out 08, 2010 14:34

ahh
entendi
vlw
muito obrigada
karol-1901
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 07, 2010 17:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}