• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Altura da maldita Pirâmide...

Altura da maldita Pirâmide...

Mensagempor billhc » Ter Dez 22, 2009 16:35

Peguei esse exercício de uma prova da UNIFEI:

O cubo da figura abaixo tem arestas medindo 5cm. Nele está inscrita uma pirâmide ABCDE, onde B eD são os pontos médios das arestas do cubo. Calcule o volume do sólido obtido quando retiramos a pirâmide do cubo.

Imagem

Minhas tentativas:

(Volume obtido) = (volume cubo) - (volume da pirâmide)
(volume obtido) = (5*5*5) - ([b.h]/3)

Achei a base da pirâmide fazendo o seguinte

(base pirâmide) = (Area face cubo) - 2.(area dos triangulos retangulos)
(base pirâmide) = (5*5) - 2.((2,5*5)/2)
(base pirâmide) = 25 - 12,5
(base pirâmide) = 12,5

Agora como eu vo achar a altura da pirâmide sendo que ela nao é regular?
Eu tentei usar a altura da pirâmide como 5cm, mas o resultado não bate com o gabarito...

Resposta do gabarito: 625/6 cm³
billhc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Dez 22, 2009 16:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: Altura da maldita Pirâmide...

Mensagempor Luiz Augusto Prado » Ter Dez 22, 2009 17:16

tá certo! h=5

só que vc tem que subtrair o volume da piramide do volume do cubo que é 125.

12,5*h/3 = 20,833333333

125-20,833333333 = 625/6
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Altura da maldita Pirâmide...

Mensagempor billhc » Ter Dez 22, 2009 18:19

brigadão!
billhc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Dez 22, 2009 16:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}