• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria espacial

Geometria espacial

Mensagempor crixprof » Qui Out 15, 2009 10:40

Estou com dificuldades para conseguir resolver esse problema. Não consigo através do volume saber qual a altura e a base, por exemplo?
É preciso um cilindro mais alto e com um diâmetro menor para ser mais econômico, mas não estou enxergando como conseguir calcular isso.
Aí está o problema:
Um tanque de forma cillindrica circular reta, sem tampa e com base horizontal tem a capacidade de 400\Pim³.
O material da base custa o dobro por metro quadrado que o dos lados. Calcular as dimensões do tanque mais econômico.
crixprof
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 15, 2009 10:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Geometria espacial

Mensagempor Elcioschin » Qui Out 15, 2009 22:30

V = pi*R²*H ----> 400*pi = pi*R²*H -----> H = 400/R²

Área ----> A = 2*pi*R*H + pi*R²

Seja P o custo da lateral e 2P o custo da base (por m²):

Custo total ----> C = (2*pi*R*h)*P + (pi*R²)*(2P) -----> C = 2*pi*R*(400/R²)*P + 2*P*pi*R² -----> C = 800*pi*P*R^(-1) + 2*pi*P*R2

Derivando em relação a R ----> C' = - 800*pi*P/R² + 4*pi*P*R ----> Igualando a zero e simplificando:

- 800/R² + 4*R = 0 -----> 4R = 800/r² -----> R³ = 200 ----> R = ³V200 ----> R ~= 0 5,85 cm----> H = 400/³V200 ----> H ~= 68,4 cm
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Geometria espacial

Mensagempor crixprof » Sex Out 16, 2009 18:27

Muito obrigada!
crixprof
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 15, 2009 10:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: