por malbec » Sex Jun 05, 2015 15:26
Nessa questão existe uma história e duas perguntas.
Uma taça da fifa tem 13 cm de diâmetro na sua base e mede 36,5 cm de altura. Considere um cilindro reto cuja base seja congruente à base da taça fifa e cuja área total de superfície seja igual a 552,5 pi cm². A altura desse cilindro é: A resposta diz que é 36cm.
A outra pergunta seria a seguinte: o troféu atribuído ao vencedor da copa contém ouro maciço de densidade 19,2g/m³. Derretendo essa quantidade de ouro podemos transformá-la em 260 cubinhos maciços de ouro com aresta de 1cm cada. Logo, a massa do ouro da taça é de. A resposta seria 5kg.
Caros amigos qualquer ajuda nessa questão seria de muita valia para mim. Não entende esse cálculo, pois na primeira pergunta eu usei a fórmula A= b.h, usei também Ab=Pir² e C=2Pir e cheguei a 1.755,26 e nem de perto essa questão se compara com o resultado, logo não tentei a segunda questão.
-
malbec
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 31, 2012 10:41
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: formação geral
- Andamento: cursando
por Kah » Qui Jun 18, 2015 18:29
Olá!
1) O exercício diz o seguinte para nós: "Considere um cilindro reto cuja base seja congruente à base da Taça FIFA". Isso quer dizer que o Raio da base da taça é igual ao raio da base do cilindro. Como ele deu o diâmetro da taça ( que é 13cm ), você terá que dividir por 2, pois:
d = 2R => 13 = 2R => R= 6,5cm
Bem, ele te deu a Área Total do cilindro, então você usara essa fórmula para encontrar a altura.
dados: Atotal = 552,5pi
R = 6,5cm
Atotal = 2Abase + Alateral
Atotal = 2piR² + 2piRH
552,5pi = 2pi(6,5)² + 2pi6,5H
Como tem pi em todos os termos você pode cortar, ficando:
552,5 = 84,5 + 13H
H = 36cm
2) Nessa questão ele diz que cada cubinho terá 1cm de aresta. Basta achar o volume de um cubinho e fazer uma regra de três para achar qual o volume de 260 cubinhos.
Vcubo = a³
Vcubo = (1)³
Vcubo = 1 cm³
1 cubinho ------- 1 cm³
260 cubinhos ----- x
x = 260 cm³
Agora é jogar na fórmula da densidade, utilizando a que foi dada pelo exercício e volume encontrado:
d = m/V
19,2 = m/ 260
m = 4992 g ou 4,992 kg
A massa será, aproximadamente, 5kg.
Espero ter ajudado!

-
Kah
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Mar 18, 2015 17:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria
por ehrefundini » Ter Abr 22, 2008 16:53
- 3 Respostas
- 7078 Exibições
- Última mensagem por admin

Qui Mai 01, 2008 15:57
Pedidos de Materiais
-
- geometria 2
por ehrefundini » Qua Mai 07, 2008 10:35
- 1 Respostas
- 5871 Exibições
- Última mensagem por admin

Qua Mai 07, 2008 10:59
Pedidos de Materiais
-
- Geometria
por rybb » Ter Ago 25, 2009 07:48
- 1 Respostas
- 2711 Exibições
- Última mensagem por Elcioschin

Seg Out 05, 2009 22:41
Trigonometria
-
- Geometria - help me?
por rybb » Ter Ago 25, 2009 07:55
- 3 Respostas
- 7076 Exibições
- Última mensagem por Molina

Qua Ago 26, 2009 23:18
Geometria
-
- geometria
por cristina » Qui Nov 19, 2009 07:05
- 0 Respostas
- 2341 Exibições
- Última mensagem por cristina

Qui Nov 19, 2009 07:05
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.