por billhc » Ter Dez 22, 2009 16:35
Peguei esse exercício de uma prova da UNIFEI:
O cubo da figura abaixo tem arestas medindo 5cm. Nele está inscrita uma pirâmide ABCDE, onde B eD são os pontos médios das arestas do cubo. Calcule o volume do sólido obtido quando retiramos a pirâmide do cubo.

Minhas tentativas:
(Volume obtido) = (volume cubo) - (volume da pirâmide)
(volume obtido) = (5*5*5) - ([b.h]/3)
Achei a base da pirâmide fazendo o seguinte
(base pirâmide) = (Area face cubo) - 2.(area dos triangulos retangulos)
(base pirâmide) = (5*5) - 2.((2,5*5)/2)
(base pirâmide) = 25 - 12,5
(base pirâmide) = 12,5
Agora como eu vo achar a altura da pirâmide sendo que ela nao é regular?
Eu tentei usar a altura da pirâmide como 5cm, mas o resultado não bate com o gabarito...
Resposta do gabarito: 625/6 cm³
-
billhc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Dez 22, 2009 16:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por Luiz Augusto Prado » Ter Dez 22, 2009 17:16
tá certo! h=5
só que vc tem que subtrair o volume da piramide do volume do cubo que é 125.
12,5*h/3 = 20,833333333
125-20,833333333 = 625/6
-

Luiz Augusto Prado
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Nov 27, 2009 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por billhc » Ter Dez 22, 2009 18:19
brigadão!
-
billhc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Dez 22, 2009 16:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- help( quero achar altura em tronco de piramide)
por tou_atoladinha » Seg Jun 09, 2008 17:06
- 2 Respostas
- 5557 Exibições
- Última mensagem por tou_atoladinha

Ter Jun 10, 2008 13:38
Geometria Espacial
-
- Achar a altura de uma Pirâmide que inscreve-se um circulo
por Rose » Seg Jun 16, 2008 11:35
- 5 Respostas
- 10109 Exibições
- Última mensagem por admin

Qua Jun 18, 2008 17:42
Geometria Espacial
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2596 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- altura da torre
por qscvrdxz » Ter Jun 02, 2009 19:21
- 2 Respostas
- 3363 Exibições
- Última mensagem por qscvrdxz

Ter Jun 02, 2009 23:15
Trigonometria
-
- ALTURA DO UMBIGO
por maria cleide » Dom Mai 22, 2011 19:27
- 1 Respostas
- 4089 Exibições
- Última mensagem por LuizAquino

Dom Mai 22, 2011 20:45
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.