• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UCB 2013 GEOMETRIA PLANA

UCB 2013 GEOMETRIA PLANA

Mensagempor Phaniemor » Qua Mai 01, 2013 13:27

Considere um cubo ABCDEFGH no qual ABCD é uma
face com 16 cm² de área, AE e BH são arestas e AG é uma
diagonal do cubo.


Em relação ao cubo citado, considere que, em cada
um de seus vértices, serão pintados três triângulos
retângulos de mesma cor, cada um sobre uma das faces
para as quais aquele vértice é comum, com o vértice do
ângulo reto sendo o vértice do cubo, e com 0,4 cm em cada
um de seus catetos. Cada um dos vértices será pintado em
uma única cor, distinta de todas as outras. A partir daí, serão
escolhidos três de seus vértices para que se faça uma
truncagem do cubo. Truncar um sólido significa fazer nele um
ou mais cortes planos. Neste caso, serão feitos exatamente
três cortes planos sobre arestas que convergem em um
mesmo vértice, e tais cortes serão feitos a 0,4 cm de
distância dos vértices escolhidos. Calcule o total de poliedros
distintos que se pode obter, a partir do cubo, ao fazer os
cortes citados, considerando que um poliedro difere de outro
também pelas cores nas quais alguns de seus vértices estão
pintados. Marque na folha de respostas, desprezando, se
houver, a parte decimal do resultado final.
Phaniemor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Abr 18, 2013 11:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}