• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Localizar ponto no plano R³

Localizar ponto no plano R³

Mensagempor samra » Qui Set 20, 2012 13:33

Olá pessoal,
como eu faço pra esboçar o ponto (0,0,0) no plano tridimensional?

(Eu achava q era a origem do plano, mas meu prof disse que não é) *-)
Se tiver como, coloquem uma imagem, por favor, pra ficar mais fácil a visualização,
Obrigada. att.
Samara
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Localizar ponto no plano R³

Mensagempor MarceloFantini » Qui Set 20, 2012 13:38

Isto é a origem do sistema cartesiano tridimensional, que não é um plano. Qual é o enunciado completo?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Localizar ponto no plano R³

Mensagempor samra » Qui Set 20, 2012 20:28

O enunciado é:
Represente x=0 , y = 0 e Z=0 no R³ .
Aí eu perguntei pro prof se o ponto é (0,0,0), ele disse q sim, que deveríamos representar esse ponto.
No desenho q ele esboçou para representar esse ponto, ficou parecendo um cubo, porém tracejado... Ele ainda completou dizendo q
no plano (x,y), qdo um dos termos é zero, e o outro varia, o esboço seria o eixo que está variando. (aí fiquei na dúvida porque no caso
de ser (0,0), significa que o ponto está na origem). Mas ele disse que no caso do plano tridimensional, este ponto seria os três eixos juntos, por isso o desenho parece um cubo.

Mas estou na dúvida... help me?
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Localizar ponto no plano R³

Mensagempor MarceloFantini » Qui Set 20, 2012 21:20

As equações x=0, y=0 e z=0 representam planos em \mathbb{R}^3, que são o plano yz, xz e xy respectivamente. A interseção desses três planos é a origem. Tente fazer o desenho pensando nisso agora.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Localizar ponto no plano R³

Mensagempor samra » Sáb Out 06, 2012 15:43

sim. Obrigada
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.