• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria espacial

geometria espacial

Mensagempor marina jose » Seg Fev 20, 2012 10:41

Como faço para determinar o numero de diagonais sem contar as diagonais de cada face??? !!!!
marina jose
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 17, 2012 17:42
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: geometria espacial

Mensagempor LuizAquino » Seg Fev 20, 2012 12:43

marina jose escreveu:Como faço para determinar o numero de diagonais sem contar as diagonais de cada face???


Suponha que o poliedro tenha v vértices e a arestas. Além disso, suponha que contando todas as diagonais das faces, obtemos um total de d diagonais.

Para calcular o número de diagonais sem considerar aquelas que estão sobre as faces, basta efetuar a operação:

\frac{v(v-1)}{2} - a - d
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: geometria espacial

Mensagempor vanessa_mat » Qua Fev 22, 2012 17:40

LuizAquino escreveu:
marina jose escreveu:Como faço para determinar o numero de diagonais sem contar as diagonais de cada face???


Suponha que o poliedro tenha v vértices e a arestas. Além disso, suponha que contando todas as diagonais das faces, obtemos um total de d diagonais.

Para calcular o número de diagonais sem considerar aquelas que estão sobre as faces, basta efetuar a operação:

\frac{v(v-1)}{2} - a - d



Estou tentando entender o problema das diagonais, mas essa fórmula, não conhecia...como faço para conseguir entender o problema??
vanessa_mat
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Nov 21, 2011 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: geometria espacial

Mensagempor LuizAquino » Qua Fev 22, 2012 22:36

vanessa_mat escreveu:Estou tentando entender o problema das diagonais, mas essa fórmula, não conhecia...como faço para conseguir entender o problema??


Dica
Note que escolhendo-se dois vértices distintos, podemos formar um dos três elementos:
(i) uma aresta;
(ii) uma diagonal sobre a face;
(iii) uma diagonal fora da face.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}