• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geoemtria espacial

geoemtria espacial

Mensagempor silvia fillet » Sex Fev 17, 2012 14:12

Um cone de geratriz medindo tres raiz quadrada de 5 cm está inscrito em um cilindro cuja área da seção meridiana é igual a 20 raiz quadrada de 5 cm2. Determine a medida do raio da base do cone.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: geoemtria espacial

Mensagempor MarceloFantini » Sex Fev 17, 2012 14:18

Quais foram suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: geoemtria espacial

Mensagempor MickaelSantos » Ter Fev 21, 2012 21:00

Ajude me nesse também, Marcelo...

Para a secção meridiana do cilindro, pensei assim:
2r.h=20\sqrt{5} \Leftrightarrow h=\frac{10.\sqrt{5}}{r}

E para o cone, pensei assim (por Pitágoras):
(3.\sqrt{5})^2=h^2+r^2 \Leftrightarrow 45=h^2+r^2

Substituindo a altura calculada anteriormente, temos:
45=(\frac{10.\sqrt{5}}{r})^2+r^2 \Leftrightarrow 45=\frac{500}{r^2}+r^2 \Rightarrow r^4-45r^2+500=0

Resolvendo tenho que:
r=5 ou r=2\sqrt{5}

E que:
h=2\sqrt{5} ou h=5

Ou seja:
Se r=5 \Rightarrow h=2\sqrt{5}

E:
Se r=2\sqrt{5} \Rightarrow h=5

Nesse caso as duas estão corretas, ou apenas uma delas. Se for só uma, qual???

Obrigado...
Professor de Matemática
Avatar do usuário
MickaelSantos
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Fev 21, 2012 19:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: geoemtria espacial

Mensagempor MarceloFantini » Ter Fev 21, 2012 21:34

Acredito que ambas estejam certas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}